NASA Contractor Report 181874

Advanced Information Processing System:
Input/Output System Services

Tom Masotto
Linda Alger

THE CHARLES STARK DRAPER LABORATORY INC.
CAMBRIDGE, MA 02139

Contract NAS1-18565
August 1989

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

Title Page
LIST OF ILLUSTRATIONS. ... iiiiiiiitietiitcreerentteeeaensetnresrasetassnsssnsenns \
1.0 INTRODUCTIONuiiiitiiiiniteeenenetatencntaeenseasnssesoncncancorsancssonsaesasensenes 1
1.1 AIPS ArCHIteCtUNE .. .iuuiniiiiiire it eiaent et eeiatteeeteeansnnsaesssancsnsaernsnns 1
1.1.1 AIPS NetWOrKS......couiiniiiiiiiiniiiiiiiiiiiiiiiieincnttnaesneiiecieeennns 4
1.2 AIPS System SOftwWarecccciuiiuiiiiiuiiiiiiiieiiiiiiiiiiiiiiiiieeeieeaens 5
1.2.1 AIPS Software Design Approach.......c.cccccceeiriveiiiniiiiniieniiiiennns 5
1.2.2 AIPS System Software OVEIVIEWcoeiiiiieineiintiieiiiininiinenneeneens 5
1.2.2.1 Local System ServiCes......oveveruiiieinneriiiiiiineiiernecreeneenns 8
1.2.2.2 Inter-Computer System ServiCescceveerniiniiiniiniennennn. 10
1.2.2.3 System Manager.......coovuiniieiiiiieniieiiiiieniiiiieieieaans 10
1.2.2.4 T/O System ServiCes.......ccceeieuriiriiriiniiiinirinnniiuucennnen 11
2.0 JOUSER INTERFACEc.citittitiitiiiiteiiteaeaee e eiete e eeeeeteeeannens 15
2.1 I/O User Interface Functional Description..........cc.cocveviiiiiiiiiniineeiennne.. 15
2.1.1 I/O Request CONStIUCHON.ovtiiuiieiiiiiieiiiiiiiiiiiiiie e 16
2.1.2 I/O Data Access OpEerations.......ceceeereieereneereemenaeereennuereecnennses 17
2.1.3 I/ORequest Scheduling.........cccoiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiineen. 19
2.2 /O User Interface Software Specifications........c.ccooveiiiiiiniiiiiiiinnnien... .20
2.2.1 T/ORequest CONSUCHON.uvtiuentriiiiniiniiniaerieieiiiiteeaneaaenns 20
2.2.1.1 Creation of 2 Transaction........c...cocceiuiiieiiiiiiiiiiieneennene. 20
2.2.1.2 Creation of a Chain......ccooiiiiiiiiniiiniiiiiiiiniiininnncennn. 23
2.2.1.3 Creationof an /O Request......ccccvvvvvniiieiiiineiiiiniiinnenn.. 24
2.2.2 I/O Data Access Operations........ccceeeeiiimiiiinniiiinniinianereeneennnees 27
2.2.2.1 I/O User Interface Write Procedures............cc..ccoiieinne. 27
2.2.2.2 I/O User Interface Read Procedures..........ccoeeeiienenenenen. 29
2.2.2.3 User Interface Selection and Deselection Procedures........... 31
2.2.2.4 1/O User Interface Error Checking Procedures 33
2.2.2.5 I/O User Interface Overrun Check.....cccooeveiiiiiiiiiannnnnnne. 34
2.2.3 I/ORequest Scheduling.........c..ccovuiiiiiiiiiniiiiniiiiiiiiiienennee. 35
2.2.3.1 Synchronization Using Flagscooiiiiiiiiiiiiinan ... 35
2.2.3.2 Synchronization Using Events.........ccccccooviiiniinininnnnnnn. 36
2.3 I/O User Interface Software Process Descriptions...........c.ccccoveeveieciinnnee 38
2.3.1 I/O System Services I/O Request Specification..............ccoeeeieiinain. 38
2.3.2 I/O System Services Application Logcccoviviuiiiiiiiiniiiniiniennnnn. 56
2.4 T/O User Interface Data Dictionary.........cccceeiiiiiieiiiiiiinnnrernnnneereennnen 58
3.0 /O COMMUNICATIONS MANAGEMENTcciiiiiiiiiiiiiiiiiiiieicneeeeens 61
3.1 1/O Communications Management Functional Description..............cco.o.e.... 61
3.1.1 I/O Traffic Control........ccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicccnneen, ..61
3.1.1.1 Queue Managementcoevvviniininiiniiiiiniiiiiinenaens. 62
3.1.1.2 I/ORequest EXecution.........c..ccevevuiiiiniiieiiiiiniiiiennnn.. 63
3.1.1.3 /O Request Completion........c.ccccvuimeiainiieinininninernnnnne. 65
3.1.2 /O Low Level UtilIties...cccoiireeriiriueniiierniunneereeenniereesenneeeenens 65
3.2 The I/O Communications Management Software Specifications................... 66
3.2.1 TJOTraffic Manager.......cccovniiiiiiiniiiiiiiiiiiiiii e neneans 66
3.2.1.1 Queue Managemento.oevueuiniieiiinninineneneareananns 66
3.2.1.2 T/ORequest EXecution..........c.covuviiinininiiiiiinniieiiinennn, 68
3.2.1.3 I/O Request Completionccceveeieiuiininnienennennranenennn. 71

PRECEDING PAGE BLANK NOT FILMED PAGE._ L INTENTIONALLY BLAN

3.2.2 I/O Low Level Utilities..cccccciviiiiriirinunniierireniieeeeenenenecereeennnen. 72

3.3 I/O Communications Management Software Process Descriptions................ 73
3.3.1 /O System Services Queue Manager..........ccccocvrrrvereeeccnnnnnnnnn. 74

3.3.2 /O System Services IOP Construct I/O Requests............cccevuiennnen. 90

3.3.3 J/O System Services Main Initialization.............ccoeeevviviinenniinnnnens, 97

3.3.4 1/O System Services Communication of Specifications Task 98

3.3.5 I/O System Services Posting Tasksccceeeeiiiieiniiieninniieennrnnnn. 100

3.3.6 /O System Services IOP POWeTup........ccceviriiiiiinieniiiinienninenns 102

3.3.7 I/O System Services Global Memory Utilitiescccevvivennnn.n. 107

3.3.8 I/O System Services Shared Memory Allocationcceeueennnnn. 111

3.3.9 I/O System Services Dual Port Memory Map...........ccecvvvenenann..n. 118

3.3.10 I/O System Services Private ID TyPes «....cocvvveriiiiineiniiniiennaninnns 120

3.4 /O Communications Management Data Dictionary...........cccceeeeneerneannees 122

4.0 1/OSYSTEM SERVICES USEREXAMPLE........ccoceiiiiiiiiiiiiiiiiiiiiienenene, 129
4.1 OVEIVIEW . ittiruaes ceuitirntnineeereneeeeertaaaseasasasasansetasssensnseaesensenensnnns 129

4.2 Construction of an I/O Network Topology .. 131

4.3 Creationof an JO Requestciviiiiiiiiniiiiiiii it 134

4.4 Creation of an Application Taskcc.ceviiiiiiiiiiiiiiiiiii e 139

4.5 Passing Control to an Application TasK....cccccooiirriiiiiiiiiiiiiiiiinninnnnnnen. 142

5.0 CONCLUSIONS AND RECOMMENDATIONS ..ottt 145
5.1 Testing of the I/O System ServiCes......cooiuviiiiiiieiiiiiiiiiiiiiii i eeeeness 145

5.2 Performance MEMrCSoviviniiiiiinitiiiiieteiiiininieceeseannanens weerteraaaeann 146

5.3 FULUTE WOTK ettt et e e et e s eee e e s e an s 148

6.0 REFERENCES......c.iititiiiiiiiteintiieetateteesnsataraeeaeateseasnseneneersesnensenss 151
APPENDIX A GLOSSARY OF JONETWORK TERMS..........ccoiiiiiiiiiiininnnn.. A-1
APPENDIX B I/O SERVICE OPERATING RULES.........c.cciviiiiiiiiiiiiiiennnene, B-1
APPENDIX C T/OSEQUENCERcccitiiiitiiiiiitiiiiiiiieeeeaaeeeiiaenaaneenenns C-1

iv

LIST OF ILLUSTRATIONS

Figure Title Page
1. AIPS Distributed Configuration............cc.cceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieenn, 3
2. AIPS System Design Approach...........ccoeiiiiiiiiiiiiiiiiiniiiiiiiiniiniiiieinan 6
3 Centralized AIPS Configuration......cc..cccciiciiiiiiieniiiiiiiiiinienineiineceecenaes 7
4 Top Level View Of System ServiCes........coiviiiiiiiiriiiiuiiiiiiiiineniieiieeneaeannn 8
5. Local SyStem SeIViCeS.....cicciiiiiiuiiiiuiriniiiiiiriiiciieetieeetrtietesiescaneenennss 9
6. Inter-Computer SyStem SEIVICES..oeureniiuirinireriiiiieniaeiiiereenerenenenns 11
7. SYStEM MANAZET...uuuuuuuunnnierinererererrereriererreraerirresreesenneannnnnsnaaaaaaaeess 12
8. T/O SYSteIM SEIVICES «euviieiiniiniitiitiie ettt ettt eeeettaneanteneennaaseennans 13
9. Interprocessor Synchronization for Communication of I/O Request Specifications . 23
10. Data Structure used for I/O Request Construction and Interprocessor
COMMUNICALION. ceutniininiiiuittiriiieiireeitirateiteeaeaiaertaenerrtseenrneneneasss 25
11. Control Flow for I/O Request Execution and Completioncccoceeiuenennen.. 69
12. I/O System Services Network Data Types Package.......cccccovveverreecernnennenn. 129
13. I/O System Services Central Database Packagec....coviiviiiiiiiiiiin i, 130
14. J/O Request PACKAZE.vournininiiineniiiiiiiiiii et e et ee e 130
15. Application Tasks Package.........ccoeviruiiiiiiiiiiiiiiiiiiiiiiiiiniiiniiinne. 130
16. CP Main Initialization Packageccoovuiiiiiiniiiniiiiii il 131
17. /O Request Processing Times for the Sample Applicationccceveenenee.. 145
18. 1I/O Request Processing Times for the Sample Application (Continued) 146
19. I/O System Services Timin'gs for the Sample Application........ccccceeevvvereennnen. 147

1.0 INTRODUCTION

This purpose of this report is to document the functional requirements and detailed
specifications for the I/O System Services of the Advanced Information Processing System
(AIPS). This introductory section is provided to outline the overall architecture and
functional requirements of the AIPS system. Section 1.1 gives a brief overview of the
AIPS architecture as well as a detailed description of the AIPS fault tolerant network
architecture, while Section 1.2 provides an introduction to the AIPS system software.
Sections 2 and 3 describe the functional requirements and design and detailed specifications
of the I/O User Interface and Communications Management modules of the I/O System
Services, respectively. Section 4 illustrates the use of the I/O System Services, while
Section 5 concludes with a summary of results and suggestions for future work in this
area.

1.1 AIPS Architecture

The Advanced Information Processing System is designed to provide a fault- and damage-
tolerant data processing architecture which can serve as the core avionics system for a
broad range of aerospace vehicles being researched and developed by NASA. These
vehicles include manned and unmanned space vehicles and platforms, deep space probes,
commercial transports, and tactical military aircraft.

AIPS is a multicomputer architecture composed of hardware and software 'building blocks'
that can be configured to meet a broad range of application requirements. The hardware
building blocks are fault-tolerant, general purpose computers (GPCs), fault- and damage-
tolerant inter-computer and input/output networks, and interfaces between the networks and
the general purpose computers. The software building blocks are the major software
functions: local system services, input/output system services, inter-computer system
services and the system manager. This software provides the services necessary in a
traditional real-time computer such as task scheduling and dispatching, communication with
sensors and actuators, etc. The software also supplies the redundancy management
services necessary in a redundant computer and the services necessary in a distributed
system such as inter-function communication across processing sites, management of
distributed redundancy, management of networks, and migration of functions between
processing sites.

The AIPS hardware consists of a number of computers located at processing sites which
may be physically dispersed throughout a vehicle. These processing sites are linked
together by a reliable, damage-tolerant data communication pathway called the Inter-
Computer (IC) bus. Since the hardware implementation of this "virtual bus" is a circuit-
switched network, but from the GPC communication and protocol viewpoint it appears as a
conventional bus, the terms "bus” and "network” are used interchangeable throughout this
document. A computer at any particular processing site may also have access to varying

1

numbers and types of Input/Output (I/O) buses, which are separate from the IC bus. The
I/O buses may be global, regional or local in nature. I/O devices on the global I/O bus are
available to all, or at least a majority, of the AIPS computers. Regional buses connect [/O
devices in a given region to the processing sites located in their vicinity. Local buses
connect a computer to the I/O devices dedicated to that computer. Additionally, I/O devices
may be connected directly to the internal bus of a processor and accessed as though the 1/O
devices reside in the computer memory (memory mapped 1/O). Both the I/O buses and the
IC bus are time-division multiple-access contention buses. Figure 1 shows the laboratory
engineering model for a distributed AIPS configuration. This distributed AIPS
configuration includes all the hardware and software building blocks mentioned earlier and
was conceived to demonstrate the feasibility of the AIPS architecture.

The laboratory configuration of the distributed AIPS system shown in Figure 1 consists of
four processing sites. Each processing site has a General Purpose Computer (GPC).
GPCs may be simplex or they may be FTPs of varying redundancy levels. Of the four
FTPs in the laboratory configuration, one is simplex, one is duplex, and two are triplex
processors. An FTP may also be quadruply redundant but none was fabricated for the
AIPS laboratory demonstration. The redundant FTPs are built such that they can be
physically dispersed for damage tolerance; each of the redundant channels of an FTP can be
as far as 5 meters from other channels of the same FTP.

The GPCs are interconnected by a triplex circuit-switched network. Each network layer
forms a full two way 'virtual bus'. The three layers are totally independent and are not
cross-strapped to each other. Each layer contains a circuit-switched node for each
processing site; thus every processing site is serviced by three nodes of the IC network.
GPCs are designed to receive data on all three layers, but the capability of a GPC to
transmit on the network depends on the GPC redundancy level. Triplex FTPs can transmit
on all three layers, duplex FTPs on only two of the three layers, and simplex processors on
only a single layer. In duplex and triplex FTPs, a given processor can transmit on only one
network layer. Thus malicious behavior of a processor can disrupt only one layer.

The IC network and the GPC interfaces into the network are designed in strict accordance
with fault-tolerant systems theory. Thus an arbitrary random hardware fault, including
Byzantine faults, anywhere in the system can not disrupt communication between triplex
FTPs. In other words, the triplex IC network, in conjunction with the GPC interfaces into
the network, provides error-masking capability for communication between two triplex
computers.

The laboratory demonstration of the I/O network is implemented using a 15-node circuit-
switched network that interfaces with each of the GPCs on 1 to 6 nodes, depending on the
GPC redundancy level. The 15 I/O nodes can be configured in the laboratory as global,
regional, and local I/O networks to demonstrate various dimensions of the AIPS I/O.
concept.

yiomieN

108$820.d teindisoo-ien \ 1 €dld
xe|duwis Y xajdng
~ y4 v VI

SHHOMLIN OA

SHHOMLIN OA

did did

- m </ \\!_.\f& | e

suod pesnu

pieogpeaig Buussuibug

o
&/
r
N
o
§ -
v all
]
1
Figure 1. AIPS Distributed Configuration

(sd1v)
wa)sAg Buissasoid uonewloju] paoueapy

1.1.1 AIPS Networks

For communication between GPCs and between a GPC and I/O devices, a damage and
fault tolerant network is employed. The network consists of a number of full duplex links
that are interconnected by circuit switched nodes. In steady state, the circuit switched
nodes route information along a fixed communication path, or 'virtual bus', within the
network, without the delays which are associated with packet switched networks. Once the
virtual bus is set up within the network the protocols and operation of the network are
similar to typical multiplex buses. Every transmission by any subscriber on a node is heard
by all the subscribers on all the nodes just as if they were all linked together by a linear bus.
Although the network performs exactly as a bus, it is far more reliable and damage tolerant
than a linear bus. A single fault or limited damage can disable only a small fraction of the
virtual bus, typically a node or a link connecting two nodes. Such an event does not
disable the network, as would be the case for a linear bus. The network is able to tolerate
such faults due to the richness of interconnections between nodes. By reconfiguring the
network around the faulty element, a new virtual bus is constructed. Except for such
reconfigurations, the structure of the virtual bus remains static.

The nodes are sufficiently intelligent to recognize reconfiguration commands from the
network manager, which is resident in one of the GPCs. The network manager performs
the necessary diagnostics to identify the failed element and can change the bus topology by
sending appropriate reconfiguration commands to the affected nodes.

Damage caused by weapons or electrical shorts, overheating, or localized fire would affect
only subscribers in the damaged portion of the vehicle. The rest of the network, and the
subscribers on it, can continue to operate normally. If the sensors and effectors are
themselves physically dispersed for damage tolerance, and the damage event does not affect
the inherent capability of the vehicle to continue to fly, then the digital system would
continue to function in a normal manner or in some degraded mode as determined by
sensor/effector availability.

Fault isolation is much easier in the network than in multiplex buses. For example, a
remote terminal transmitting out of turn, a rather common failure mode which will totally
disable a linear bus, can be easily isolated in the network through a systematic search where
one terminal is disabled at a time. Furthermore, for networks of moderate size, up to 50
nodes, most faults can be detected, isolated and the network reconfigured in milliseconds.

The network can be expanded very easily by linking the additional nodes to the spare ports
in existing nodes. In fact, nodes and subscribers to the new nodes (I/O devices or GPCs)
can even be added without shutting down the existing network. In bus systems, power to
buses must be turned off before new subscribers or remote terminals can be added.

Finally, there are no topological constraints, as are encountered with linear or ring buses.
4

In fact, these are simply subsets of the fault-tolerant network architecture.
1.2 AIPS System Software

The AIPS system software, as well as the hardware, has been designed to provide a virtual
machine architecture that hides hardware redundancy, hardware faults, multiplicity of
resources, and distributed system characteristics from the applications programmer.
Section 1.2.1 discusses the approach used for the AIPS system software design. Section
1.2.2 is a high level description of the system services that are provided for AIPS users.

1.2.1 AIPS Software Design Approach

The approach used to design the AIPS system software is part of the overall AIPS system
design methodology. An abbreviated form of this system design methodology is shown in
Figure 2. This methodology began with the application requirements and eventually led to
a set of architectural specifications. The architecture was then partitioned into hardware and
software functional requirements. This report documents the design approach used for I/O
System Services software, beginning with the functional requirements and proceeding
through detailed specifications.

Hardware and software for the AIPS architecture is being designed and implemented in two
phases. The first phase is the centralized AIPS configuration. The centralized AIPS
architecture, as shown in Figure 3, is configured as one triplex Fault Tolerant Processor
(FTP), an Input/Output network and the interfaces between the FTP and the network,
referred to as input/output sequencers (IOS). The laboratory demonstration of the
input/output network consists of 15 circuit-switched nodes which can be configured as
multiple local I/O networks connected to the triplex GPC. For example, the I/O network
may be configured as one 15-node network, as shown in Figure 3, or as three 5-node
networks. The software building blocks that have been designed and implemented for the
AIPS centralized architecture include local system services and I/O system services. The
following subsection 1.2.2 gives an overview of all the AIPS software building blocks.
The rest of this document , Sections 2 through 4, focuses on the functional design and
detailed specification of the I/O System Services.

1.2.2 AIPS System Software Overview

As shown in Figure 4, AIPS system software provides the following AIPS System
Services: local system services, communication services, system management, and I/O
system services. The system software is being developed in Ada. System services are
modular and partitioned naturally according to hardware building blocks. The distributed
AIPS configuration includes all the services. Versions of the system software for specific
applications can be created by deleting unused services from this superset. The System
Manager functions reside on only one GPC, but all functions of the System Manager are

5

Application
Requirements

AIPS Attributes

AIPS Architecture
Specifications
&

Guidelines

System Software
Functional
Requirements

System Hardware
Functional
Requirements

System Software
Specifications

System Hardware

Specifications
IC System
Services

/0 System

CICIOC

Figure 2. AIPS System Design Approach

Local System
Services

Services

not necessarily on the same GPC. The other system services are replicated in each GPC.
The following is a brief description of each of the services.

DIV

15-NODE 1/0 NETWORK

DIV

O

DiU
I0S

TRIPLEX FTP

Node

Active Link

Spare Link

Device Interface Unit

GPC/Network Interface (I/O Sequencer)

Figure 3. Centralized AIPS Configuration

DIU

Figure 4. Top Level View Of System Services

1.2.2.1 Local System Services

The local system services provided in each GPC are: GPC initialization, real-time operating
system, local resource allocation, local GPC Fault Detection, Isolation, and
Reconfiguration (FDIR), GPC status reporting, and local time management (see Figure 5).

The function of GPC initialization is to bring the GPC to a known and operational state
from an unknown condition (cold start). Each channel of a GPC has two processors: a
computational processor (CP) and an input/output processor (IOP). GPC initialization
synchronizes the CPs with each other, synchronizes the IOPs with each other, and resets or
initializes the GPC hardware and interfaces (interval timers, real time clock, interface
sequencers, DUART, etc.) It makes the hardware state of the redundant channels
congruent by alignment of memory and control registers. It then activates the system
baseline software that is common to every GPC.

The AIPS real-time operating system supports task execution management, including
scheduling according to priority, time and event occurrence, and is responsible for task
dispatching, suspension and termination. It also supports memory management, software
exception handling, and intertask communication between companion processors (IOP and
CP). The AIPS operating system resides on every CP and IOP in the system. It uses the
vendor-supplied Ada Run Time System (RTS), and includes additional features required
for the AIPS real-time distributed operating system.

8

SYSTEM STATUS

v

Figure 5. Local System Services

The GPC resource allocator coordinates and determines responsibility for any global or
migratable functions from the system resource manager. It also monitors commands from
the system resource manager to start or stop any function.

The GPC status reporter collects status information from the local functions, the local GPC
FDIR, the IC system services and the I/O system services. It updates its local data base
and disseminates this status information to the system manager.

GPC FDIR has the responsibility for detecting and isolating hardware faults in the CPs,
IOPs, and shared hardware. It is responsible for synchronizing both groups of processors
in the redundant channels of the FTP and for disabling outputs of failed channel(s) through
interlock hardware. After synchronization, all CPs will be executing the same machine
language instruction within a bounded skew, and all IOPs will be executing the same
machine language instruction within a bounded skew. GPC FDIR logs all faults and
reports status to the GPC status reporter. It is responsible for the CPU hardware exception
handling and downmoding/upmoding hardware in response to configuration commands
from the system manager. It is also responsible for transient hardware fault detection and
for running low priority self tests to detect latent faults. This redundancy management
function is transparent to the application programmer.

The local time manager works in cooperation with the system time manager to keep the
local real time initialized and consistent with the universal time. It is also responsible for

9

providing time services to all users. A detailed description of the Local System Services in
provided in [1].

1.2.2.2 Inter-Computer System Services

The inter-computer system services provide two functions: (1) inter-computer user
communication services, that is, communication between functions not located in the same
GPC, and (2) inter-computer network management (Figure 6).

The IC user communication service provides local and distributed inter-function

communication which is transparent to the application user. It provides synchronous and

asynchronous communication, performs error detection and source congruency on inputs,

and records and reports IC communication errors to IC network managers. Inter-computer

communication can be done in either point to point or broadcast mode and is implemented -
in each GPC.

“The IC network manager is responsible for the fault detection, isolation and reconfiguration

of the network. The AIPS distributed configuration consists of three identical, independent
IC network layers which operate in parallel to dynamically mask faults in a single layer and
provide reliable communication. There is one network manager for each network layer.
However, the three network layer managers do not need to reside in the same GPC. They
are responsible for detecting and isolating hardware faults in IC nodes and links and for
reconfiguring their respective network layer around any failed elements. The network
manager function is transparent to all application users of the network.

1.2.2.3 System Manager

The system manager is a collection of system level services including the applications
monitor, the system resource manager, the system fault detection, isolation and
reconfiguration (FDIR), and the system time manager (Figure 7).

The applications monitor interfaces with the applications programs and the AIPS system
operator. It accepts commands to migrate functions from one GPC to another, to display
system status, to change the state of the system by requesting a hardware element state
change, and to convey requests for desired hardware and software configurations to the
system resource manager.

The system resource manager allocates migratable functions to GPCs. This involves the

monitoring of the various triggers for function migration such as failure or repair of
hardware components, mission phase or workload change, operator or crew requests and

10

REALLOC FUNCTION
FLAG ALLOCATION

G TUS
PC STA >

LOCAL IC STATUS

Figure 6. Inter-Computer Systemn Services

timed events. It reallocates functions in response to any of these events. It also designates
managers for shared resources and sets up the task location data base in each GPC.

The system fault detection, isolation and reconfiguration (FDIR) is responsible for the
collection of status from the inter-computer (IC) network managers, the I/O network
managers, and the local GPC redundancy managers. It resolves conflicting local fault
isolation decisions, isolates unresolved faults, correlates transient faults, and handles
processing site failures.

The system time manager, in conjunction with the local time manager on each GPC, has the
job of maintaining a consistent time across all GPCs. The system time manager indicates to
the local time manager when to set its value of time. It also sends a periodic signal to
enable the local time manager to adjust its time to maintain consistency with an external time
source such as the GPS Satellites or an internal source such as the real time clock in the
GPC which hosts the system time manager software.

1.2.2.4 1/O System Services

The 1/O system services provide efficient and reliable communication between the user and
external devices (sensors and actuators). The I/O system services software is also
responsible for the fault detection, isolation and reconfiguration of the I/O network
hardware and GPC/network interface hardware (input/output sequencers).

I/O system services is made up of three functional modules: I/O user interface, I/O
communication management and the I/O network manager (Figure 8).

The I/O user interface provides a user with read/write access to I/O devices or device
interface units (DIUs), such that the devices appear to be memory mapped. It also gives the

11

CONFIG REQUEST

SYSTEM REALLOC FLAG
RESOURCE
:Ym’“ STATUS\ MONITOR CONFIG RESPONSE \ MANAGER

IC STATUS
TIME TIME REQUEST
MANAGER
TIME STATUS
= SYSTEM TIME
CONFIG CMND IC NETWORK
CONFIG CMNQ‘

Figure 7. System Manager

user the ability to group I/O transactions into chains and I/O requests, and to schedule I/O
requests either as periodic tasks or on demand tasks.

The I/O communication manager provides the functions necessary to control the flow of
data between a GPC and the various I/O networks used by the GPC. It also performs
source congruency and error detection on inputs, voting on all outputs, and reports
communication errors to the I/O network manager. It is also responsible for the
management of the I/O request queues.

The I/O network manager is responsible for detecting and isolating hardware faults in I/O
nodes, links, and interfaces and for reconfiguring the network around any failed elements.
The network manager function is transparent to all application users of the network.

The I/O user interface, I/O communications management, and I/O redundancy management
modules are dependent processes, as illustrated in Figure 8. The I/O communication
management process uses the database of I/O request specifications (I/O request database)
that is constructed by the I/O user interface. In addition, the I/O user interface and
communications management modules interact when communicating the I/O data,

12

I/O Service

Figure 8. I/O System Services

synchronizing the CP and IOP tasks, and processing of the I/O requests. The I/O
communications management process interacts with the I/O redundancy management
module for the communication of network status, diagnostic information, and FDIR
commands. Furthermore, the communication management and redundancy management
modules both use the I/O database and I/O low level utilities.

Sections 2 and 3 describe the functional requirements and design and detailed specifications
of the I/O User Interface and I/O Communications Manager, respectively. The software
requirements and specifications for the /O Network Manager are described in [2]. Section
4 illustrates the use of the I/O System Services for the applications programmer, and
Section 5 concludes with a summary of results. '

13

PRECEDING PAGE BLANK NOT FILMED

2.0 YO USER INTERFACE

The I/O User Interface provides a user with access to I/O devices or device interface units
(DIUs). It provides this access to the DIUs in such a way that to the applications user they
appear to be memory mapped. That is, each DIU with which the FTP interfaces can be
simply addressed by means of read/write routines that simulate memory mapped I/O to the
user. It also provides the user with the option of either single or chained transactions on an
I/O network (a transaction is an HDLC frame sent to a single DIU using the HDLC
protocol; a chain or chained transactions is an ordered set of one or more transactions
addressed to devices on one I/O network). The use of chained transactions allows very
efficient use of the network bandwidth. Redundant chains can be executed in a (nearly)
simultaneous fashion on redundant I/O networks to provide data to and from redundant
devices with a bounded time skew. /O activity may be scheduled to run periodically or on
demand. The I/O User Interface provides the means to form I/O requests from single or
chained transactions and to schedule I/O requests (an I/O request is a set of one or more
single or chained I/O transactions, each of which executes on a different I/O network).
These 1/O request specifications result in CP/IOP shared memory assignments for data and
error information for each DIU transaction. In addition, the I/O User Interface provides
system calls for safely accessing those memory mapped locations. Although DIUs are
connected to a fault tolerant network, all network access protocols, source congruency and
error processing on inputs, and fault masking on outputs are transparent to the user.

The description of the I/O User Interface is divided into three sections: functional
description, software specifications, and software process descriptions.

2.1 YO User Interface Functional Description

The I/O User Interface is divided into three functions: I/O Request Construction, I/O Data
Access Operations, and I/O Request Scheduling.

I/0 USER
INTERFACE

I/0 REQUEST I/0 DATA ACCESS I/0 REQUEST
CONSTRUCTION OPERATIONS SCHEDULING

The I/O Request Construction function allows the user to create I/O transactions, specify
how they will be grouped and how each I/O request will be scheduled. The I/O Data
Access Operations provide the read/write routines that allow the user to access I/O chain

15

'%Ifwoﬂmg BLAN

data in shared memory,-while hiding the CP/IOP protocol from the user. The I/O Request
Scheduling provides the user with the flexibility to schedule each 1/O request as a cyclic
free running task that runs and signals the caller when each cycle has completed or an on-
demand task that is only scheduled when requested.

2.1.1 T/O Request Construction

The applications user can construct transactions, chains, and I/O requests in an hierarchical
manner. Initially, the parameters associated with each transaction must be specified.
Secondly, the transactions that are sequentially executed as a unit on one network are
grouped to form an I/O chain. Finally, the chains are grouped into I/O requests to fully
maximize the bandwidth of the communications network by allowing the simultaneous
execution of chains on the parallel networks of an I/O service. The applications user can
construct one or more [/O requests for each I/O service (an I/O service is a logical
organization imposed on I/O network use) as dictated by the requirements of the
application.

The I/O User Interface requires several parameters to be specified in order to create an I/O
transaction. The user has to specify whether the transaction will request information from
or send a command to a DIU (input and output transaction respectively). In either case, the
DIU must be specified. In addition, the user must provide the number of data bytes to be
sent to the DIU (all transactions) and the number of data bytes that will be returned by the
DIU (all input transactions). Accordingly, the location(s) of the appropriate data buffer(s)
on the CP must be specified in order to read/write the data associated with the DIU. The
user must also specify whether the output data is dynamic or static. If the data is dynamic,
then it is copied into the IOS prior to each execution of the associated chain. If the data is
static, then it is copied into the IOS only once. For input transactions, the user must
specify the maximum number of errors that are tolerable before the transaction is bypassed
(deselected by the I/O System Services) and the transaction time-out which is the maximum
time that can expire before a byte of data is received from the DIU. The I/O User Interface
constructs a record using this information and returns a transaction identifier (ID) to allow
the user to later identify the transaction.

After the transactions are specified and created, they are grouped to form chains. Chains
allow efficient use of the communications bandwidth, but are only applicable to a single
network. Accordingly, the user must specify the transactions that will form the chain, and
the network on which they will be executed. The I/O User Interface records the chain
information and returns a chain identifier to the user.

After the chains are specified and created, they are grouped into I/O requests. An I/O
request is a set of one or more chains each of which simultaneously executes on a parallel
network of an I/O service. The creation of the I/O request requires the user to specify the
chains that will form the request. In addition, the user must provide the I/O request time

16

out which is the maximum length of time that the I/O request requires the I/O network (used
for I/O request execution and processing). Furthermore, the desired scheduling
requirements must be provided. This scheduling information specifies if the I/O request is
periodic or on demand, the priority of the request, and the frequency with which 1/O
request uses an event to signify its completion. If the I/O request is periodic, the
scheduling requirements also specify the repetition period, how it is started (after_delay,
on_event, or at_absolute_time), and how it will stop (never_stop or stop_on_event). The
I/O User Interface records the I/O request information and returns an I/O request identifier
to the user.

In order to make the redundancy management, source congruency, multiprocessing
(CP/IOP) communications protocol, and fault masking transparent to the user, the [/O
specifications (transaction, chain, and I/O request) must be communicated through shared
memory to the IOP. The IOP uses the information to construct a set of companion records.
The companion records are transaction, chain, or I/O request specification records that are
the IOP duals of CP transaction, chain, or I/O request records. The companion records are
used when processing the 1/O requests. A CP/IOP handshaking protocol is incorporated to
insure that the I/O request specifications and associated data are not corrupted during their
transmission through shared memory.

2.1.2 1/O Data Access Operations

The 1/O Data Access Operations provide read/write routines that allow the user to access /O
data in shared memory that appears to the user to be memory mapped. The redundancy
management of the fault-tolerant network, network access protocols, source congruency
and error processing on the inputs, fault masking on the outputs, and CP/IOP
communications protocol are transparent to the user. The applications user is able to write
commands to and request information from the DIUs. In addition, select and deselect
system calls are available allowing the user to add and remove transactions from their
corresponding chains (enabling error recovery and dynamic I/O request reconfiguration).
The I/O Data Access routines also allow the user to determine whether or not errors
occurred in the I/O requests and to isolate the location of the error(s) if one (or more)
resulted.

The user can send control data to the DIUs using the I/O User Interface write procedures.
Command information (output data) can be sent a DIU by writing data to the transactions
that communicate with the DIU. The data can be modified on a transaction by transaction,
chain by chain, or request by request basis. The CP must write the data into shared
memory to communicate it to the IOP. The IOP reads the data and writes it into the dual
ported memory of the IOS prior to executing the I/O request. Since the IOP may attempt to
read the data from shared memory while the CP may be modifying it, semaphores and
double buffering are used to maintain consistent data sets. Since a chain is executed as a
unit, the data associated with the chain must also be considered a unit. Accordingly, it is

17

not sufficient that the semaphores simply lock access to the transactions. The semaphores
must, at least, control the access to the I/O chain data.

The user can read the information returned by the DIUs (input data) using the I/O User
Interface read procedures. Accordingly, the user can obtain response data from the DIUs,
process the data, and generate output commands based upon the results. The data can be
read on a transaction by transaction, chain by chain, or request by request basis. As with
the write procedures, semaphores and double buffering are used to maintain consistent data
throughout the chains. The data returned by the DIUs may be corrupted by errors. The I/O
User Interface returns a parameter that notifies the user of an occurrence of an error. In
addition, the data returned to the user may not have been updated since the previous read
procedure ("old data"). The occurrence of "old data" signifies that a scheduling overrun
has occurred except when the I/O request and its associated applications task are not
synchronized (i.e. both are free running cyclic tasks). The I/O User Interface allows the
user to check whether or not the data has been modified since the data was last read.

The occurrence of errors in the network may cause a DIU to become inaccessible. As a
result, a transaction requesting data from that DIU would not contain any valid information.
The ability to deselect a transaction allows the user to remove any undesired transactions
from a chain. The deselection command is communicated to the IOP through shared
memory. Since the IOP may be executing an I/O request when the deselection procedure is
called, the CP may not be able to immediately send the command. The application tasks
should not have to wait for the deselect command to be accepted by the IOP. As a result,
the deselect procedure returns a parameter specifying whether or not the deselection request
was accepted.

The restoration of failed elements of the network may cause a previously inaccessible DIUs
to become reachable. The select procedure allows the user to include previously deselected
(or bypassed) transactions in the I/O chains. As with the deselect procedure, the I/O User
Interface returns a parameter specifying whether or not the selection request was accepted.

As previously mentioned, the data returned by the DIUs may be corrupted by errors. The
user is notified of the occurrence of errors by a parameter returned by the read procedure
call. The I/O User Interface allows the user to determine if the error was in a chain (chain
time out) or a transaction of a chain. The user can isolate the location of an error and
disregard the corrupted data.

The creation of an I/O request requires the specification of its scheduling requirements (see
Section 2.1.1 - I/O Request Construction). The I/O request is scheduled on the IOP based
on these specifications and is executed when the requirements are met. If the I/O request is
not able to executed when the scheduling requirements have been fulfilled, a scheduling
overrun occurs. The I/O User Interface allows the user to check whether or not an overrun
has occurred.

18

2.1.3 /O Request Scheduling

The I/O Request Scheduling provides the application with the flexibility to schedule each
I/O request as a cyclic free running task that runs and signals the caller when complete or an
on demand task that is only scheduled when requested. The user specifies the scheduling
requirements for the I/O requests when the I/O requests are created (see Section 2.1.1 - [/O
Request Construction).

Each I/O request may correspond to one or more application tasks defined by the user.
Accordingly, the I/O User Interface must provide synchronization mechanisms to
coordinate the I/O requests with the application tasks. The synchronization mechanisms
provided by the I/O System Services are events and flags. Events are signals which are
observed by the GPC Real Time Operating System. The events interrupt the co-processor
and are used to activate/deactivate a task on the co-processor. Flags are passive signals
which may be observed or ignored by the application tasks. The flags do not interrupt the
co-processor and are used to indicate the completion of the I/O requests.

The completion of an I/O request is indicated by a flag in shared memory. The I/O System
Services on the IOP sets the flag when the I/O request completes whether or not errors
occurred. The application tasks on the CP can read and clear the flag.

The completion of an I/O request is indicated by an event if the user has specified this
option when creating the I/O request. The I/O System Services on the IOP signals the
event when the I/O request completes whether or not errors occurred. These events are
used to activate application tasks (via the GPC Real Time Operating System) that are
blocked waiting for the completion of an I/O request. The I/O User Interface provides a
mechanism for an application task to obtain a pointer to an event, allowing the task to be
scheduled as an event-driven process.

On demand I/O requests are started on the IOP only when the user issues a start command.
When an on demand I/O request is created, the user must specify the priority of the request,
how often the completion event should be set, and the I/O request time-out.

Periodic I/O requests are executed periodically on the IOP. Accordingly, the user must
specify the period of the I/O request. In addition, the priority of the I/O request and I/O
time-out must be provided. The periodic I/O requests may be scheduled to start on
demand, at a specific time, or after a specific amount of time has expired. Furthermore, the
periodic I/O requests may be scheduled to run forever or to stop on demand.

19

2.2 I/O User Interface Software Specifications

As discussed in Section 2.1, the I/O User Interface is divided into three sections: /O
Request Construction, I/O Data Access Operations, and I/O Request Scheduling.

The I/O Request Construction function involves the allocation and initialization of I/O
request records on the CP, data buffers in shared memory, and program/data regions on the
I/O Sequencer (IOS - see appendix C for detailed description). This function also
communicates the I/O request specifications to the IOP and creates companion I/O records
(the IOP transaction, chain and I/O request specification records that are the IOP duals of
the transaction, chain and I/O request records on the CP) which are used when executing
and processing the I/O requests.

The Data Access Operations use the shared memory data buffers allocated during the 1/O
Request Construction to provide the appearance of memory mapped I/O. These functions
use semaphores and double buffering to maintain consistent data sets. The Data Access
Operations also control the interprocessor communication required to allow the user to
select/deselect transactions and obtain error information.

The I/O Request Scheduling function supports the use of flags and events to synchronize
application tasks on the CP with their corresponding I/O requests.

2.2.1 /O Request Construction

The applications user is able to construct transactions, chains, and I/O requests in an
hierarchical manner. Since the I/O requests are created on the CP and all I/O activity is
performed by the I/O System Services on the IOP, the I/O Request Construction process
must initialize the CP, IOP and shared memory. The design of the I/O Request
Construction function is discussed in the following sections.

2.2.1.1 Creation of a Transaction

The basis of the construction of an I/O request is the specification of an I/O transaction.
The format for the creation of a transaction is as follows:

CREATE_TRANSACTION(TRANSACTION_ID,
TRANSACTION_INFO);,
where

TRANSACTION_ID is an identifier (returned by the I/O User Interface) which
uniquely specifies the transaction. The applications programmer uses the
TRANSACTION_ID when using system calls during later operation.

20

TRANSACTION_INFO is a discriminated record (provided by the user) based on
whether it is an INPUT or OUTPUT transaction (specified by its IO parameter).

1. The TRANSACTION_INFO record always has the following fields:
DIU_ID is an identifier that specifies the device interface unit addressed.

NUM_DATA_BYTES_OUT is a parameter which specifies the number of
bytes that will be sent to the DIU.

DYNAMIC_OR_STATIC is a boolean that specifies whether the output data
associated with the transaction is dynamic or static.

DATA_BUFFER_OUTPUT is a parameter which specifies the address on the
CP of the user's output data buffer (for specifying output commands to the DIU
for this transaction).

2. If IO = INPUT, then the TRANSACTION_INFO record has the following
additional fields:

NUM_DATA_BYTES_IN is a parameter which specifies the number of bytes
that will be returned by the DIU.

MAX_BEFORE_BYPASS is a parameter which specifies the maximum
number of errors that can be tolerated before the transaction is bypassed. If the
parameter is zero, then the transaction will not be bypassed.

TIME_OUT is a parameter which specifies the maximum length of time (even
number of microseconds) that can expire before an incoming data byte is
received.

DATA_BUFFER_INPUT is a parameter which specifies the address on the CP
of the user's input data buffer (to record the response data from the DIU for this
transaction)

The CREATE_TRANSACTION call allocates and initializes a transaction record object
using the information provided by the user. The allocation of the record involves the
initialization of an element of a local transaction pointer array. The local transaction pointer
array accesses a transaction record using the transaction ID as an index. As a result, the [/O
User Interface can directly access any information associated with a transaction, if its ID is
known. The I/O User Interface returns the transaction ID to allow the application to
identify each transaction.” The identity of the transaction is necessary when the user
constructs chains, checks for transaction errors, and selects/deselects transactions.

21

Due to limited dual ported memory (4000 bytes for user I/O chains and data) in the IOS, the
number of transactions that can be created is limited. When the transaction is created, the
size requirements of the transaction (program and data memory requirements) are calculated
and compared to the available memory space. If memory required is less than the memory
available, then a section of dual ported memory is reserved for this transaction. If the
memory required is greater than the available memory, an exception is raised to the user
indicating the problem.

After the initialization of the transaction record, the CREATE_TRANSACTION process
running on the CP allocates two input data buffers (if an input transaction) and two output
data buffers in shared memory. Two sets of 1/O data buffers are allocated per transaction to
eliminate data contention problems between the I/O System Services read/write tasks
executing on the CP and the read/write tasks executing on the IOP. Data contention is
eliminated because each processor is always able to obtain one of the two buffers. The
processor that is writing data into shared memory determines which buffer is available (not
locked by the other processor) prior to writing. The processor that is reading data
determines the available buffer that contains the most current data. In order to select and
lock the I/O buffers, the processes running on the CP and IOP allocate common data buffer
select variables (pre-defined flags) in shared memory. These select variables are protected
by semaphores so that the variables are only modified by one process at a time. In
addition, two error status records are allocated in shared memory to associate error
information with each set of I/O buffers. As a result, this "Double Buffering" scheme
allows the simultaneous writing and reading of I/O request data (to different buffers) while
maintaining consistent data and error information.

After the I/O buffers have been allocated, the output data buffers are initialized if the user
provides initial data. The CP process then waits (polls a flag) until the corresponding IOP
communication task acknowledges (sets the flag) that it can accept the new transaction
record. The CP process then writes the transaction specifications to shared memory. The
CP process also writes, into a predefined memory location, the addresses of the previously
allocated shared I/O data buffers. After the information has been written, the CP process
signals the IOP communication task using an event. The IOP task reads the transaction
specifications, allocates a companion transaction record, initializes a local transaction
pointer, and creates the transaction record. The communication protocol between the CP
and IOP is illustrated in the Figure 9.

22

Ccp

Initialize Record
Parameters;

Allocate SM based

Wait_for_IOP_Ready;

Put the Addrs. of the
SM Data Buffers into SM;

Put the Record Info. into
SM;

Initialize the SM Output
Data Buffer;

Use an Event to
Schedule the IOP
Communication Task;

on the User's Desired Number
of Data Bytes;

I0P

Completion Signal from Previous Cycle
Allowing this Procedure Call to Proceed

N\

Completion Signal allowing Next
Procedure Call to Proceed »

Loop
Wait_for_Schedule;

Dynamically Allocate a
Record Type;

Read the Record
Parameters from SM;

Read the Addrs. of the SM
Data Buffers;

Initialize Local Record
Pointer;

Use a Flag to Signal the

Completion of the Initialization
of the Companion Record

End Loop;

Figure 9. Interprocessor Synchronization for Communication
of I/O Request Specifications

2.2.1.2 Creation of a Chain

After the specification of the transactions, they are grouped into chains. The format for the

specification of a chain is as follows:

CREATE_CHAIN(CHAIN_ID,
NETWORK_ID,

TRANSACTION_LIST)

where

CHAIN_ID is an identifier (returned by the I/O User Interface) which uniquely
specifies the chain. The application uses the CHAIN_ID when using system calls

during later operation.

23

NETWORK_ID is an identifier which specifies the network on which the chain will
be executed (provided by the user).

TRANSACTION_LIST is a variant object which specifies the number of
transactions in the chain and the corresponding array of TRANSACTION_IDs
(provided by the user).

The CREATE_CHAIN call allocates and initializes a chain record object using the
information provided by the user. The allocation of the record involves the initialization of
an element of a local chain pointer array. The local chain pointer array accesses a chain
record using the chain ID as an index. As a result, the I/O User Interface can directly
access any information associated with a chain, if its ID is known. The initialization
process forms a doubly linked tree between the transactions and their respective chain
allowing direct access to a chain from a transaction or to a transaction from a chain
(illustrated in Figure 10). The CP process returns the chain ID to allow the applications
user to identify each chain. The identity of the chain is necessary when the user constructs
I/O requests and checks for chain errors.

After the allocation and initialization of the chain record, the CP process communicates the
information to the IOP communication task using the same protocol as involved in sending
transaction records. The IOP task creates a companion chain record on the IOP and assigns
an element of its local chain pointer array to point to it.

2.2.1.3 Creation of an I/O Request

After the specification of the chains, they are grouped into I/O requests. The format for the
specification of an I/O request is:

CREATE_IOR(IOR_ID,
CHAIN_LIST,
SCHED_INFO)

where
IOR_ID is an identifier (returned by I/O User Interface) which allows the

application to uniquely specify the I/O request. The applications programmer uses
the IOR_ID when using system calls during later operation.

24

Transaction Transaction Transaction
Record #j Record #j+1 v Record #k

Figure 10. Data Structure used for /O Request Construction and Interprocessor
C R

CHAIN_LIST is a variant object which specifies the number of chains in the [/O
request and the corresponding array of CHAIN_IDs (provided by user).

SCHED_INFO is a discriminated record (provided by the user) based on whether it
is an ON_DEMAND or PERIODIC I/O request (specified by its
HOW_SCHEDULED parameter).

1. The SCHED_INFO record always has the following fields:

PRIORITY is a parameter which specifies the priority (0 - 7) of the associated
IOP task. A lower priority number implies a lower degree of urgency and an
I/O request with a priority of 7 will preempt lower priority requests.
COMPLETION_EVENT 1is a parameter indicating the frequency
(ONCE_ONLY, ALWAYS, NEVER) with which an I/O request uses an event
to signify its completion.

IOR_TIME_OUT is a parameter which specifies the maximum length of time

(in microseconds) that an I/O request actively possesses an 1/O network(s)

25

during its execution. The parameter is used by the I/O System Services when
executing and processing the I/O request.

2. If HOW_SCHEDULED = PERIODIC, then the SCHED_INFO record requires
the following additional fields:

REPETITION_PERIOD is a parameter which specifies the length of the
repetition period in seconds.

WHEN_TO_STOP is an enumeration type which may be assigned to
NEVER_STOP or STOP_ON_DEMAND. The parameter is used to specify
how the 1/O request should complete.

START is a discriminated record based on whether the HOW_STARTED
discriminate is specified to be START_ON_DEMAND,
START_AFTER_DELAY, or START_AT_ABSOLUTE_TIME.

a. If HOW_STARTED = START_ON_DEMAND
- Additional fields are not necessary.
b. f HOW_STARTED = START_AFTER_DELAY
- The additional field WAIT_FOR is necessary which specifies the
length of time to wait before the I/O request is initiated (in seconds).
c¢. IfHOW_STARTED =START_AT_ABSOLUTE_TIME
- The additional field AT_ABSOLUTE_TIME is necessary to specify
the time to start the /O request (in seconds).

The CREATE_IOR call allocates and initializes an I/O request record object using the
information provided by the user. The allocation of the record involves the initialization of
an element of a local I/O request pointer array. The local I/O request pointer array accesses
an I/O request record using the I/O request ID as an index. As a result, the I/O User
Interface can directly access any information associated with an I/O request, if its ID is
known. The initialization process forms a doubly linked tree between the chains and their
respective I/O request (allowing direct access to an I/O request from a chain or to a chain
from an I/O request). As a result, transactions can indirectly access their associated I[/O
request as illustrated in the Figure 10. The CREATE_IOR process running on the CP
returns the I/O request ID to allow the applications user to identify each request. The
identity of the request is necessary when referencing I/O requests from application
processes/tasks.

The initialization of the I/O request record involves the calculation of a I/O System Services
I/O request time out. As previously mentioned, the I/O request time out is the length of
time that the I/O request actively possesses an I/O network(s) during its execution. Since
each chain of the I/O request executes (nearly) simultaneously, the I/O request time out only

26

depends on the longest chain time out. The chain time out, which is the length of time a
chain requires possession of a network, is based on the number of transactions, length of
the transaction time outs, and amount of I/O data associated with the chain. After the I/O
System Services I/O request time out is calculated, it is compared to the I/O request time out
provided by the user to determine if the user's I/O request time out is too short. If the
user's I/O request time out is deemed to be too short, a warning is issued to the user.

After the allocation and initialization of the I/O request record, the CP process
communicates the information to the IOP communication task using the same protocol as
involved in sending transaction records. The IOP task creates a companion I/O request
record and assigns an element of its local I/O request pointer array to point to it.

2.2.2 /O Data Access Operations

The applications user is able to access the data associated with the I/O requests in a memory
mapped fashion. The appearance of memory mapped I/O is accomplished by allocating
data sections in shared memory to emulate the data regions of the IOS and making the
reading/writing protocol transparent to the user. The I/O Data Access function also
provides error detection and chain reconfiguration capabilities to the user. The design of
the I/O Data Access function is discussed in the following sections.

2.2.2.1 1/0 User Interface Write Procedures

The I/O User Interface allows the user to write output data to DIUs on a transaction by
transaction or I/O request by I/O request basis. The ability to write data only to a
transaction is desirable when a chain is mixed but primarily consists of static command
frames. The ability to write data to all of the output data buffers is desirable when one or
more of the chains of an I/O request are mixed but primarily consist of dynamic command
frames. The procedures for writing output data to DIUs are as follows:

1. WRITE_TRANSACTION(TRANSACTION_ID,
IOR_DATA_IS_CONSISTENT,
LOCKED);

2. WRITE_IOR(IOR_ID,
LOCKED);

3. WRITE_INITIAL_IOR_DATA(IOR_ID,
LOCKED),

27

where

TRANSACTION_ID is a parameter which uniquely identifies the associated
transaction. It is assigned by the system when the transaction is created and must
be provided by the user for the WRITE_TRANSACTION system call.

IOR_ID is a parameter which uniquely identifies the associated I/O request. It is
assigned by the system when the I/O request is created and must be provided by the
user for the WRITE_IOR system call.

IOR_DATA_IS_CONSISTENT is a boolean (provided by the user) which, when
TRUE, signifies that the output data for the I/O request is consistent.

LOCKED is a boolean (returned by I/O User Interface) which, when TRUE,
signifies that the shared memory buffer select area was locked when the
applications process/task attempted to select an output buffer.

Since the I/O System Services on the IOP controls access to the I0S dual ported memory,
the output data is written into shared memory from the CP rather than directly to the IOS.

An output data buffer select variable is used to determine an available buffer. The buffer
select variable is guarded by a semaphore to guarantee mutual exclusion. After a buffer is
selected, the output data is written and the buffer is made available to the I/O System
Services on the IOP. As a result, the chain output data sets of the I/O request are consistent
and I/O data contention is avoided.

The WRITE_IOR procedure performs a test and set operation on the semaphore that guards
the output data buffer select variable for the I/O request and if the select region is unlocked,
it selects an available buffer, unlocks the select region, and writes the dynamic output data
for the entire I/O request into shared memory. If the buffer select variable is locked, the
procedure continues to perform the test and set operation until the region becomes unlocked
or 100 test and set iterations pass. If 100 iterations pass and the select region is still
locked, it is assumed that a fault has caused a deadlock situation (select region is locked but
neither processor has control of it). If such a deadlock situation occurs, the procedure
disregards the semaphore, determines the available buffer, resets the semaphore, sets the
LOCKED parameter, and writes the output data.

After the output data has been written into shared memory, the select variables must be
updated to specify the available buffer with the most current data. The WRITE_IOR
procedure performs the test and set process as previously described, and when the select
region is unlocked, the buffer select variable (in shared memory) is set equal to the buffer
into which the output data was written.

28

Similarly, the WRITE_TRANSACTION procedure checks the locking mechanism, selects
a buffer, and writes the output data for the specified transaction. Yet, the user may want to
change one transaction in each chain before the associated I/O request is executed.
Accordingly, the Write Transaction procedure allows the user specify if the data is
consistent throughout the I/O request. If the data is not consistent, the buffer is not made
available to the I/O System Services on the IOP, and the I/O System Services will read the
other data buffer until the user states that the data is consistent. As a result, the user does
not have to worry about an I/O request being executed with inconsistent data.

The WRITE_INITIAL_IOR_DATA procedure is identical to the WRITE_IOR procedure
except that it writes all of the /O request output data (dynamic and static) into shared
memory. Typically, this procedure is used to initialize the IOS output buffers.

2.2.2.2 I/O User Interface Read Procedures

The 1/O User Interface allows the user to read input data from DIUs only on an [/O request
by I/O request basis. Since the input data is dynamic, all of the input data associated with
an I/O request is desired. The format for reading data from DIUs is as follows:

READ_IOR(IOR_ID,
LOCKED,
ERROR,
OLD_DATA);

where

IOR_ID is a parameter which uniquely identifies the associated I/O request. It is
assigned by the system when the I/O request is created and must be provided by the
user for the READ_IOR system call.

LOCKED is a boolean (returned by I/O User Interface) which, when TRUE,
signifies that the shared memory buffer select area was locked when the
applications process/task attempted to select an input buffer.

ERROR is a boolean (returned by I/O User Interface) which, when TRUE,
signifies that an error occurred in at least one of the chains of the I/O request. The

application can isolate the location of ‘the error by invoking the procedures
TRANSACTION_ERROR and CHAIN_ERROR.

OLD_DATA is a boolean (returned by I/O User Interface) which, when TRUE,

signifies that the I/O request data was NOT updated by the IOP since the previous
READ_IOR call. The data was NOT read during this call.

29

Since the /O System Services running on the IOP controls access to the IOS dual ported
memory, the input data is read from shared memory to the CP rather than directly from the
IOS. An input data buffer select variable is used to determine the available buffer that
contains the most current data. A semaphore is used to guarantee that the buffer select
variable is only modified by one processor at a time (note that this is a different semaphore
than that used for output data buffers). After the available buffer is selected, it is locked by
the I/O System Services on the CP to maintain consistent data throughout the buffer
(prevents the I/O System Services on the IOP from writing into the buffer while the CP is
reading from it), and the input data and associated error information is read into the CP's
local memory.

The READ_IOR procedure performs a test and set operation on the semaphore that guards
the input data buffer select variable for the I/O request and if select region is unlocked, the
procedure selects/locks an available buffer, unlocks the select region, and reads the input
data and error status for the I/O request. If the buffer select variable is locked, the
procedure continues to perform the test and set operation until the region becomes unlocked
or 100 test and set iterations pass. If 100 iterations pass and the select region is still
locked, it is assumed that a fault has caused a deadlock situation (region is locked but
neither processor has control of it). If such a deadlock situation occurs, the procedure
disregards the semaphore, determines the available buffer, resets the semaphore, sets the
LOCKED parameter, and reads the input data and error information.

After the input data and error status has been read from shared memory, the input data
buffer select variable must be updated to unlock the input data buffer. The Read I/O
request procedure performs the test and set process as previously described, and when the
select region is unlocked, the buffer is unlocked by modifying the select variable in shared
memory.

The I/O Request Completion Function (discussed in Section 3.1. 1.3) checks for chain and
transaction errors. The errors are communicated to the I/O System Services on the CP by
setting flags in shared memory. The ERROR flag is an ORing of all chain and transaction
errors. '

An "old data" flag is returned to the application task to notify the task that the input data has
not been updated since it was last read. This flag is set by the Read 1/O Request process,
and it is reset when the IOP writes new data into the shared data buffers. If the Read I/O
Request procedure returns a true value in the OLD_DATA flag and the application process
is synchronized with the I/O request, then a scheduling overrun has occurred.

30

2.2.2.3 1/O User Interface Selection and Deselection Procedures

The I/O User Interface allows the user to select and deselect transactions from their
corresponding chains. As a result, the user has some error recovery control and can
dynamically reconfigure the I/O requests. The format for selecting and deselecting
transactions is as follows:

1. SELECT_TRANSACTION(TRANSACTION_ID,
REQUEST_ACCEPTED)

2. DESELECT_TRANSACTION(TRANSACTION_ID,
REQUEST_ACCEPTED)

where

TRANSACTION_ID is a parameter which uniquely identifies the associated
transaction. It is assigned by the system when the transaction is created and must
be provided by the user for the SELECT_TRANSACTION or
DESELECT_TRANSACTION system call.

REQUEST_ACCEPTED is a boolean (returned by 'I/O User Interface) that, if
TRUE, signifies that the command was accepted.

As previously mentioned, the I/O System Services on the IOP controls access to the IOS
dual ported memory. Accordingly, the transaction selection (or deselection) command
must be communicated to the IOP. The basic unit of information that must be transmitted is
the type of command (selection or deselection) and transaction ID. The I/O User Interface
uses two five element arrays, two semaphores and two boolean flags to communicate
transaction selection and deselection commands from the CP to the IOP. The arrays (one
for selection and one for deselection) are buffers to communicate the transaction IDs to the
IOP. The semaphores are used to maintain consistent sets of IDs, and the boolean flags are
used to notify the IOP of the selection and deselection commands. The CP control flow
involved in the communication of a SELECT_TRANSACTION procedure call is outlined
below: -

1) The application invokes the SELECT_TRANSACTION system call.

2) The CP Select Transaction process test and sets the semaphore locking the
shared memory select buffer.

3) If the IOP is reading from or writing to the buffer (is locking the region), the
Select Transaction process notifies the application that the request was not
accepted.

31

4)

5)

6)

If the IOP is not reading from or writing to the buffer (the region is available),
the Select Transaction process searches for the first unused element in the array
(the test and set function has locked the buffer).

If the array is full (five selection requests are pending), the Select Transaction
process notifies the application that the request was not accepted and unlocks
the buffer.

If an element of the array is available, the Select Transaction process initializes
the element, sets a shared memory flag to notify the IOP, and unlocks the
buffer.

The IOP control flow involved in the processing of an I/O request (with respect to the
SELECT_TRANSACTION and DESELECT_TRANSACTION procedure calls) is outlined

below:

D
2)

3)
4)

5)

6)

7

8)
9)

10)

The Queue Manager task accepts a pending I/O request to be processed.

The Queue Manager task checks the selection shared memory flag to determine
if a selection request has been made.

If the flag is not set, then the Queue Manager task processes the I/O request.

If the flag is set, the task test and sets the semaphore locking the shared
memory select buffer. :

If the CP is reading from or writing to the buffer (is locking the region), the
Queue Manager processes the [/O request.

If the CP is not reading from or writing to the buffer (the region is available),
the Queue Manager process reads the first transaction ID (the test-and set
function has locked the buffer).

The Queue Manager task modifies the IOS program area to select the
transaction, initializes the transaction ID to a null value, and checks the array to
determine if another transaction is to be selected.

If another transaction ID is in the shared memory buffer, then (7) is repeated.
If not, then the Queue Manager task unlocks the select buffer.

After the select transaction requests have been processed, the Queue Manager
repeats the same process (2-8) for deselection requests.

After the deselect transaction requests have been processed, then the Queue
Manager task processes the I/O request.

To deselect a transaction, the Queue Manager task modifies the chain program so that the
IOS skips over the set of instructions used to execute the deselected transaction. To select a
transaction, the task modifies the chain program so that the IOS does not skip over the
relevant set of instructions.

32

2.2.2.4 1/O User Interface Error Checking Procedures

Errors may occur during the execution of the I/O requests. The user is notified of the
occurrence of an error(s) when the input data corresponding to the I/O request is read. The
I/O User Interface provides system calls to allow the user to determine the location of the
error(s). The formats for these calls are as follows:

1. TRANSACTION_ERROR(TRANSACTION_ID)
2. TRANSACTION_IS_BYPASSED(TRANSACTION_ID)

3. CHAIN_ERROR(CHAIN_ID,
ERROR_IN_CHAIN,
ALL_TRANSACTIONS_ARE_BAD,
CHAIN_DID_NOT_COMPLETE,
TRANSACTION_NOT_EXECUTED,
NETWORK_STATUS)

where

TRANSACTION_ID is a parameter which uniquely identifies the associated"
transaction. It is assigned by the system when the transaction is created and must
be provided by the user for the TRANSACTION_ERROR function call.

CHAIN_ID is a parameter which uniquely identifies the associated chain. It is
assigned by the system when the chain is created and must be provided by the user
for the CHAIN_ERROR procedure call.

ERROR_IN_CHAIN is a boolean parameter (returned by the I/O User Interface)
that, if TRUE, signifies that an error occurred during the execution of the chain.

ALL_TRANSACTIONS_ARE_BAD is a boolean parameter (returned by the I/O
User Interface) that, if TRUE, signifies that errors occurred in all of the transactions
of the chain. ‘

CHAIN_DID_NOT_COMPLETE is a boolean parameter (returned by the I/O User
Interface) that, if TRUE, signifies that the chain did not complete when the I/O
request was processed.

TRANSACTIONS_NOT_EXECUTED is a boolean parameter (returned by the 1/O
User Interface) that, if TRUE, signifies that one or more transactions in the chain
were not executed because they were deselected and/or bypassed.

33

NETWORK_STATUS is a enumerated object (returned by the I/O User Interface)
that signifies the state of the network when the I/O request was executed
(In_Service, Temporarily_Out_of_Service, Permanently_Out_of_Service).

As discussed in the I/O Communications Management Functional Requirements (Section
3.1), the I/O Traffic Control function performs the I/O Request Completion processing.
The I/O Request Completion function primarily consists of chain and transaction error
processing. If an error is detected, then flags are set in shared memory to notify the 1/O
System Services on the CP of its existence and location. Each transaction has two boolean
status flags (to convey error and bypass information) and each chain has five status flags
(in correspondence with the parameters returned by the CHAIN_ERROR procedure). The
CHAIN_ERROR procedure returns the state of the corresponding error flags to the user.
If the state of the ERROR_IN_CHAIN boolean is true, then the transaction(s) which has an
error can be isolated using the TRANSACTION_ERROR procedure. Furthermore, if the
state of the TRANSACTION_NOT_EXECUTED flag is true, the
TRANSACTION_IS_BYPASSED procedure can be used to determine whether or not a
transaction has been bypassed by the I/O System Services. The
TRANSACTION_IS_BYPASSED procedure specifies which transactions have been
bypassed by the I/O System Services (not deselected by the user). If one or more
transactions have been deselected by the user, the TRANSACTION_NOT_EXECUTED
flag will be set by the I/O System Services, but the "associated
TRANSACTION_IS_BYPASSED fields will not be set. The application must account for
the transactions that it deselects.

The status information returned by the CHAIN_ERROR, TRANSACTION_ERROR, and
TRANSACTION_IS_BYPASSED procedures is only valid after the READ_IOR
procedure has been called due to the "Double Buffering” scheme. Since two sets of I/O
buffers are used for interprocessor data communication, two sets of status buffers are
required to maintain consistent data/status information (each data buffer must its own status
buffer). When the READ_IOR procedure is called, one set of data and status buffers is
written into the local memory on the CP from shared memory. The CHAIN_ERROR,
TRANSACTION_ERROR, and TRANSACTION_IS_BYPASSED procedures read the
status buffer in local memory when returning status information to the application. As a
result, the READ_IOR procedure must be called prior to invoking any of these error
checking procedures.

2.2.2.5 /O User Interface Overrun Check
If an I/O request can not be executed when its scheduling requirements have been fulfilled,
then a scheduling overrun occurs. The I/O User Interface allows the user to determine if an

overrun has occurred using the following function call:

IOR_HAS_OVERRUN(IOR_ID)

34

where

IOR_ID is a parameter which uniquely identifies the associated I/O request. It is
assigned by the system when the I/O request is created and must be provided by the
user for the IOR_HAS_OVERRUN system call.

The occurrence of an overrun is detected by the Posting task associated with the I/O request
(a Posting task is a task that is scheduled on the IOP based on the scheduling requirements
of an I/O request). A parameter (integer number) in shared memory is updated to reflect the
occurrence (or frequency of occurrences) of an overrun. This parameter is read from
shared memory and returned to the user by the IOR_HAS _OVERRUN function.

2.2.3 I/O Request Scheduling

Each I/O request may correspond to one or more application tasks executing on the CP.
Since the I/O requests are processed on the IOP, the I/O User Interface must provide flags
and events (synchronization mechanisms) to coordinate the I/O requests with the
application tasks.

2.2.3.1 Synchronization Using Flags
Flags are used to indicate the completion of I/O requests. The I/O Request Completion
processing involves the setting of a flag in shared memory to notify the user that the request
has been executed and processed. The I/O User Interface allows the user to read and clear
these flags.
1. IOR_READY(IOR_ID)
2. CLEAR_IOR_READY(IOR_ID)
3. IOR_READY_AND_CLEAR(IOR_ID)
where
IOR_ID is a paramctér which uniquely identifies the associated I/O request. It is
assigned by the I/O System Services when the I/O request is created and must be
provided by the user for the system call.
The IOR_READY function call reads the completion flag associated with the I[/O request

identified by the IOR_ID parameter. If the I/O request has completed, then the flag will be
set (true). The flag may be cleared using the procedure CLEAR_IOR_READY. In

35

addition, the flag can be read and cleared in a single step using the procedure
IOR_READY_AND_CLEAR.

Flags are also used to synchronize the I/O System Services on the CP and the IOP. The
IOP must wait for the CP to create and communicate the I/O request specifications.
Alternatively, the CP must wait for the IOP to initialize the I/O Services. Accordingly,
functions are provided to allow the CP to signal and wait for the IOP.

1. CP_COMPLETED

2. WAIT_UNTIL_IOP_COMPLETED
The CP_COMPLETED function sets a flag in shared memory to acknowledge the
completion of I/O request initialization process. The WAIT_UNTIL_IOP_COMPLETED
function allows the CP to wait until the IOP initializes the I/O Services before continuing.

2.2.3.2 Synchronization Using Events

The completion of an I/O request is indicated by an event if user has specified this option
when creating the I/O requests. The 1/O User Interface allows the user to obtain a pointer
to the I/O request completion event allowing the scheduling of application tasks through the
GPC Real Time Operating System. The format for the function call is as follows:

IOR_COMPLETION_EVENT(IOR_ID)
where
IOR_ID is a parameter which uniquely identifies the associated I/O request. It is
assigned by the system when the I/O request is created and must be provided by the

user for the system call.

The frequency that the I/O User Interface uses an event to signal the completion of an I/O
request is specified when the request is created. The completion event may be specified to

. occur once only, always, or never. The event is used to either initially synchronize an

application task with its corresponding I/O request or to periodically trigger an on demand
application task. '

Events are also used to start and stop I/O requests. The following system calls are available
to the user.

1. START_IOR(IOR_ID)

2. STOP_IOR(IOR_ID)

36

where

IOR_ID is a parameter which uniquely identifies the associated I/O request. It is
assigned by the system when the I/O request is created and must be provided by the
user for the system call.

These procedure calls are used to start or stop an I/O request after a periodic request has

been created with the START_ON_DEMAND or STOP_ON_DEMAND option. The
START_IOR procedure is also used to start on demand I/O requests.

37

2.31/0 User Interface Software Process Descriptions

The 1/O User Interface Software Process Descriptions divide the description of the I/O User
Interface into functional packages. This section uses Booch diagrams (a high level
diagrammatic design methodology put forward by Grady Booch - see [3]) and process
descriptions to present the Software Specifications in more detail. The Booch diagrams are
used to map the I/O User Interface Software Specifications into functional packages, tasks,
and subprograms. The process descriptions are used to describe these functional groups in
detail.

The /O User Interface is divided into two functional packages: I/O System Services I/O
Request Specification and Application Log.

2.3.1 VO System Services I/O Request Specification

-)
I0SS_IOR_SPEC

C | ID_ARRAY D)

(TRANSACTION_ID_TYPE)

(CHAIN_ID_TYPE)

(: IOR_ID_TYFE)

(' PERIODIC_SCHED_RECORD)
| §

(IOR_SCHED RECORD)
1

(’I’RANSACT[ON_INFO_RECORD)
i
CREATE_TRANSACTION
I
CREATE_CHAIN

CREATE_IOR

SELECT_TRANSACTION

DESELECT_TRANSACTION

WRITE_IOR

READ_IOR

T

WRITE_TRANSACTION

L)

38

p
I0SS_IOR_SPEC
IOIR:COMPLETION_EVENT
START_IOR
I
STOP_IOR
I
IOR_READY

T

CLEAR_IOR_READY

IOR_READY_AND_CLEAR

1

TRANSACTION_ERROR

L

TRANSACTION_IS_BYPASSED

CHAIN_ERROR

IOR_HAS_OVERRUN

1

WRITE_INITIAL_IOR_DATA

)

WAIT_FOR_IOP_COMPLETED
1

CP_COMPLETED

WAIT_FOR_SPEC_RECEIVED

L

39

2.3.1.1 Process Name: Create Transaction

Inputs: Transaction Information Record
Outputs: Transaction Identifier
Transaction Specifications
Requirements
Reference: I/O User Interface Functional Requirements, Section 2.1.1

I/O User Interface Software Specifications, Section 2.2.1.1
Notes: None
Description:

The Create Transaction process allocates memory on the CP and initializes a transaction
record (transaction specifications) based on the transaction information provided by the
application. The application can create two types of transactions:

1) An input transaction which involves an output sequence of instructions that
requests information from a DIU and an input sequence of instructions that
waits for the DIU response.

2) An output transaction which consists of an output sequence of instructions that
sends information to a DIU and does not expect a response.

The application must provide the following information for all transactions:
1) The type of transaction - input or output.
2) DIU identifier.
3) Number of output data bytes.
4) Type of output data - dynamic or static.
5) Pointer to the output data buffer on the CP.

The application must provide the following additional information for input transactions:
1) Number of input data bytes.
2) Maximum number of errors allowable before system bypass.
3) Allowable time out before an incoming data byte is received.
4) Pointer to the input data buffer on the CP.

The process calculates the transaction identifier and returns it to the application. The
identity of the transaction is necessary when the user constructs I/O chains, checks for
transaction errors, and selects/deselects transactions. The process also initializes an
element of a local transaction pointer array which allows the I/O User Interface to access
any information associated with the transaction if its ID is known. In addition, the process

40

initializes internal variables (variables that are transparent to the application) which are used
for I/O error processing.

After the transaction record is initialized, the Create Transaction process communicates this
information to the IOP communication task through shared memory. The communication
process is initiated by waiting for the IOP task to acknowledge that it is ready for new data.
After the acknowledgement has been received, the Create Transaction process writes the
transaction record information into pre-defined locations. The process then allocates two
sets of I/O buffers in shared memory to communicate data between the CP and IOP. The
pointers to these data buffers are communicated to the IOP task through pre-defined
locations in shared memory. In addition, if the application provides initial output data, the
process initializes the shared memory output data buffers. After the allocation and
initialization is finished, the Create Transaction process uses an event to notify an IOP
communication task that the new transaction specifications and data pointers are available
and can be read.

When the event activates the IOP communication task, the task creates and initializes a
companion transaction record on the IOP and assigns an element of its local transaction

pointer array to point to it.

2.3.1.2 Process Name: Create Chain

Inputs: Network Identifier
"~ Transaction List
Outputs: Chain Identifier
Chain Specifications
Requirements
Reference: ~ /O User Interface Functional Requirements, Section 2.1.1
I/O User Interface Software Specifications, Section 2.2.1.2
Notes: None
Description:

The Create Chain process allocates and initializes a chain record object using the
information provided by the application. The allocation of the record involves the
initialization of an element of a local chain pointer array. The local chain pointer array
accesses a chain record using the chain identifier as an index. As a result, the [/O User
Interface can directly access any information associated with a chain, if its ID is known.
The initialization process forms a doubly linked tree between the transactions and their
respective chain (allowing direct access to a chain from a transaction or to a transaction

41

from a chain). The Create Chain process returns the chain ID to allow the applications user
to identify each chain. The identity of the chain is necessary when the user constructs I/O
requests and checks for chain errors.

After the allocation and initialization of the chain record, the Create Chain process
communicates the information to the IOP communication task using the same protocol as
involved in sending transaction records. The IOP task creates a companion chain record on
the IOP and assigns an element of its local chain pointer array to point to it.

2.3.1.3 Process Name: Create /O Request

Inputs: Scheduling Information
Chain List
Outputs: I/O Request Identifier
I/O Request Specifications
Requirements
Reference: I/O User Interface Functional Requirements , Section 2.1.1
I/O User Interface Software Specifications, Section 2.2.1.2
Notes: None
Description:

The Create I/O Request call allocates and initializes an I/O request record object using the
information provided by the user. The allocation of the record involves the initialization of
an element of a local I/O request pointer array. The local I/O request pointer array accesses
an /O request record using the I/O request identifier as an index. As a result, the I/O User
Interface can directly access any information associated with an I/O request, if its ID is
known. The initialization process forms a doubly linked tree between the chains and their
respective 1/O request (allowing direct access to an I/O request from a chain or to a chain
from an I/O request). As a result; transactions can indirectly access their associated 1/O
request. The CP returns the I/O request ID to allow the applications user to identify each
request. The identity of the request is necessary when referencing I/O requests from
application processes/tasks.

After the allocation and initialization of the I/O request record, the CP communicates the

_ information to the IOP using the same protocol as involved in sending transaction records.

The IOP creates a companion I/O request record and assigns an element of its local I/O
request pointer array to point to it.

42

2.3.1.4 Process Name:
Inputs:
Outputs:

Notes:

Description:

Select- Transaction
Transaction Identifier
Confirmation of Select Request being Accepted

Transaction Select Flag
Transaction Select Array

I/O User Interface Functional Requirements, Section 2.1.2
I/O User Interface Software Specifications, Section 2.2.2.3

None

The Select Transaction process sends a selection request to the I/O Communications
Management function. The protocol involved in the communication of the selection request
is discussed in detail in Section 2.2.2.3 of the I/O User Interface Software Specifications.

2.3.1.5 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Deselect Transaction
Transaction Identifier
Confirmation of Deselect Request being Accepted

Transaction Deselect Flag
Transaction Deselect Array

I/O User Interface Functional Requirements, Section 2.1.2
I/O User Interface Software Specifications, Section 2.2.2.3

None

The Deselect Transaction process sends a deselection request to the I/O Communications
Management function. The protocol involved in the communication of the deselection
request is discussed in detail in Section 2.2.2.3 of the I/O User Interface Software

Specifications.

43

2.3.1.6 Process Name:- Write I/O Request

Inputs: I/O Request Identifier
Outputs: State of the Locking Semaphore
Dynamic Output Data
Requirements
Reference: I/O User Interface Functional Requirements, Section 2.1.2

I/O User Interface Software Specifications, Section 2.2.2.1
Notes: None
Description:

The Write I/O Request procedure performs a test and set operation on the semaphore that
guards the output data buffer select variable for the I/O request. If the select region is
unlocked, it selects an available buffer, unlocks the select region, and writes the dynamic
output data for the entire I/O request into shared memory. If the buffer select region is
locked, the procedure continues to perform the test and set operation until the region
becomes unlocked or 100 test and set iterations pass. If 100 iterations pass and the select
region is still locked, it is assumed that a fault has caused a deadlock situation (select region
is locked but neither processor has control of it). If such a deadlock situation occurs, the
procedure disregards the semaphore, determines the available buffer, resets the semaphore,
sets the LOCKED parameter, and writes the output data.

After the output data has been written into shared memory, the output data buffer select
variable must be updated to specify the available buffer with the most current data. The
Write I/O Request procedure performs the test and set process as previously described, and
when the select region is unlocked, the buffer select variable (in shared memory) is set
equal to the buffer into which the output data was written.

2.3.1.7 Process Name: Read I/O Request

Inputs: I/O Request Identifier
Outputs: State of the Locking Semaphore
Error Flag
Old Data Flag
Input Data
Requirements
Reference: I/O User Interface Functional Requirements, Section 2.1.2

I/O User Interface Software Specifications, Section 2.2.2.2
Notes: None
Description:

The Read I/O Request procedure performs a test and set operation on the semaphore that
guards the input data buffer select variable for the I/O request. If select region is unlocked,
the procedure selects/locks an available buffer, unlocks the select region, and reads the
input data and error status for the I/O request. If the buffer select region is locked, the
procedure continues to perform the test and set operation until the region becomes unlocked
or 100 test and set iterations pass. If 100 iterations pass and the select region is still
locked, it is assumed that a fault has caused a deadlock situation (region is locked but
neither processor has control of it). If such a deadlock situation occurs, the procedure
disregards the semaphore, determines the available buffer, resets the semaphore, sets the
LOCKED parameter, and reads the input data and error information.

The I/O Request Completion function checks for chain and transaction errors. The errors
are communicated to the CP by setting flags in shared memory. An error flag is returned
to the application, and it represents an ORing of all chain and transaction errors.

An "old data" flag is returned to the application task to notify the task that the input data has
not been updated since it was last read. This shared memory flag is set by the Read I/O
Request process, and it is reset when the IOP writes new data into the shared data buffers.
If the Read I/O Request procedure returns a true value in the "old data" flag and the
application process is synchromzed with the I/O request, then a scheduling overrun has
occurred.

After the input data has been read from shared memory, the input data buffer select variable
must be updated to unlock the input data buffer. The Read I/O request procedure performs
the test and set process as previously described, and when the select region is unlockcd the
buffer is unlocked by modifying the select variable in shared memory .

45

2.3.1.8 Process Name: Write Transaction

Inputs: Transaction Identifier
Data is Consistent Boolean
Outputs: State of the Locking Semaphore
Output Data for the Transaction
Requirements
Reference: I/O User Interface Functional Requirements, Section 2.1.2
I/O User Interface Software Specifications, Section 2.2.2.1
Notes: None
Description:

The Write Transaction procedure performs a test and set operation on the semaphore that
guards the output data buffer select variable for the I/O request. If the select region is
unlocked, it selects an available buffer, unlocks the select region, and writes the output data -
for the transaction into shared memory. If the buffer select region is locked, the procedure
continues to perform the test and set operation until the region becomes unlocked or 100
test and set iterations pass. If 100 iterations pass and the select region is still locked, it is
assumed that a fault has caused a deadlock situation (select region is locked but neither
processor has control of it). If such a deadlock situation occurs, the procedure disregards
the semaphore, determines the available buffer, resets the semaphore, sets the LOCKED
parameter, and writes the output data.

The user may want to change one transaction in each chain before the associated I/O request
is executed. Accordingly, the Write Transaction procedure allows the user specify if the
data is consistent throughout the I/O request. If the data is not consistent, the buffer is not
made available to the I/O System Services on the IOP. As a result, the user does not have
to worry about an I/O request being executed with inconsistent data.

After the output data has been written into shared memory, the output data buffer select
variable must be updated to specify the available buffer with the most current data (if the
data is consistent). The Write Transaction procedure performs the test and set process as
previously described, and when the select region is unlocked, the buffer select variable (in
shared memory) is set equal to the buffer into which the output data was written.

46

2.3.1.9 Process Name: I/O Request Completion Event

Inputs: I/0 Request Identifier

Outputs: Event Pointer

Requirements

Reference: I/0O User Interface Functional Requirements, Section 2.1.3

I/O User Interface Software Specifications, Section 2.2.3.2
Notes: None
Description:

The completion of an I/O request is indicated by an event if user has specified this option
when creating the I/O requests. The I/O Request Completion Event process allows the
application to obtain a pointer to the I/O request completion event allowing the scheduling
of application tasks through the GPC Real Time Operating System. The Completion Event
is used to either synchronize an application task with its corresponding I/O request or
periodically trigger an on_demand application task.

2.3.1.10 Process Name: Start I/0 Request

Inputs: I/O Request Identifier

Outputs: I/O Request Start Event

Requirements

Reference: I/O User Interface Functional Requirements, Section 2.1.3

I/0 User Interface Software Specifications, Section 2.2.3.2
Notes: None
Description:
Events are used to start and stop 1/O requests. The Start [/O Request process is used to
start an I/O request after a periodic request has been created with the

START_ON_DEMAND option. The Start I/O Request process is also used to start
on_demand I/O requests.

47

2.3.1.11 Process Name:
Inputs:

Outputs:

Requirements

Reference:

Notes:

Description:

Stop I/O Request
I/O Request Identifier

I/O Request Stop Event

I/O User Interface Functional Requirements, Section 2.1.3
I/O User Interface Software Specifications, Section 2.2.3.2

None

Events are used to start and stop I/O requests. The Stop I/O Request process is used to
stop an I/O request after a periodic request has been created with the STOP_ON_DEMAND

option.

2.3.1.12 Process Name:
Inputs:

Outputs:

Requirements

Reference:

Notes:

Description:

I/O Request Ready

I/O Request Identifier

I/O Request Completion Flag

I/O User Interface Functional Requirements, Section 2.1.3
I/O User Interface Software Specifications, Section 2.2.3.1

None

Flags are used to indicate the completion of I/O requests. The I/O Request Completion
processing involves the setting of a flag in shared memory to notify the application that the
request has been executed and processed. The I/O User Interface allows the user to read

and clear these flags.

The I/O Request Ready process reads the completion flag associated with the 1/O request
identifier (provided by the application). If the I/O request has completed, then the flag that
is returned to the application will be set (true).

48

2.3.1.13 Process Name: Clear /O Request Ready

Inputs: 1/O Request Identifier

Outputs: I/O Request Completion Flag

Requirements

Reference: I/O User Interface Functional Requirements, Section 2.1.3

I/O User Interface Software Specifications, Section 2.2.3.1
Notes: None
Description:

The Clear I/O Request Ready procedure clears the completion flag that is associated with
the 1/O request identifier (provided by the application).

2.3.1.14 Process Name: I/O Request Ready and Clear

Inputs: I/O Request Identifier -
Outputs: I/O Request Completion Flag

~ Requirements :
Reference: 1/0 User Interface Functional Requirements, Section 2.1.3

- I/O User Interface Software Specifications, Section 2.2.3.1
Notes: None
Description:
Flags are used to indicate the completion of I/O requests. The I/O Request Completion
processing involves the setting of a flag in shared memory to notify the application that the
request has been executed and processed. The I/O User Interface allows the user to read

and clear these flags.

The I/O Request Ready and Clear process reads and resets the completion flag associated
with the I/O request identifier (provided by the application).

49

2.3.1.15 Process Name: Transaction Error

Inputs: Transaction Identifier

Outputs: Transaction Error Flag

Requirements

Reference: I/O User Interface Functional Requirements , Section 2.1.2

I/O User Interface Software Specifications, Section 2.2.2.4
Notes: None
Description:

The I/O Request Completion function performs chain and transaction error processing. If
an error(s) occur in the execution of the I/O request, then the I/O Request Completion
function sets flags in shared memory to notify the I/O System Services on the CP. The
Transaction Error process checks for the occurrence of an error in a transaction by reading
the associated error flag.

The status information returned by the Transaction Error procedure is only valid after the
Read I/O Request procedure has been called due to the "Double Buffering” scheme. Since
two sets of I/O buffers are used for interprocessor data communication, two sets of status
buffers are required to maintain consistent data/status information (each data buffer must its
own status buffer). When the Read I/O Request procedure is called, one set of data and
status buffers is written into the local memory on the CP from shared memory. The
Transaction Error procedure reads the status buffer in local memory when returning status
information to the application. As a result, the Read I/O Request procedure must be called
prior to invoking the Transaction Error procedure.

50

2.3.1.16 Process Name: Transaction is Bypassed

Inputs: Transaction Identifier

Outputs: Transaction Bypassed Flag

Requirements

Reference: I/O User Interface Functional Requirements , Section 2.1.2

I/O User Interface Software Specifications, Section 2.2.2.4
Notes: None
Description:

The I/O Request Completion function performs chain and transaction error processing. If a
transaction was not executed because it was deselected or bypassed, then the I/O Request
Completion function sets flags in shared memory to notify the I/O System Services on the
CP. The Transaction Is Bypassed process checks whether or not a transaction is bypassed
by reading the associated status flag.

~ The status information returned by the Transaction Is Bypassed procedure is only valid
after the Read I/O Request procedure has been called due to the "Double Buffering"
scheme. Since two sets of I/O buffers are used for interprocessor data communication, two
sets of status buffers are required to maintain consistent data/status information (each data
buffer must its own status buffer). When the Read I/O Request procedure is called, one set
of data and status buffers is written into the local memory on the CP from shared memory.
The Transaction Is Bypassed procedure reads the status buffer in local memory when
returning status information to the application. As a result, the Read I/O Request procedure
must be called prior to invoking the Transaction Is Bypassed procedure.

51

2.3.1.17 Process Name: Chain Error
Inputs: Chain Identifier

Outputs: Chain Error Flag
All Transactions are Bad Error Flag
Chain Did Not Complete Error Flag
Transaction Not Executed Flag

Network Status Flag
Requirements
Reference: I/O User Interface Functional Requirements , Section 2.1.2
I/O User Interface Software Specifications, Section 2.2.2.4
Notes: None
Description:

The I/O Request Completion function performs chain and transaction error processing. If
an error(s) occur in the execution of the I/O request or a transaction(s) has not been
executed because it has been deselected or bypassed, then the I/O Request Completion
function sets flags in shared memory to notify the I/O System Services on the CP. The
Chain Error procedure checks for the occurrence of errors and deselected/bypassed
transactions in a chain by reading the associated status flags.

The I/O Request Completion function records the status of the I/O networks on which an
I/O request is executed (recorded when the I/O request is processed). The Chain Error
procedure returns a field to the user giving the status of the associated I/O network at the
time the chain was executed.

The status information returned by the Chain Error procedure is only valid after the Read
I/O Request procedure has been called due to the "Double Buffering" scheme. Since two
sets of I/O buffers are used for interprocessor data communication, two sets of status
buffers are required to maintain consistent data/status information (each data buffer must its
own status buffer). When the Read I/O Request procedure is called, one set of data and
status buffers is written into the local memory on the CP from shared memory. The Chain
Error procedure reads the status buffer in local memory when returning status information
to the application. As a result, the Read 1/O Request procedure must be called prior to
invoking the Chain Error procedure.

52

2.3.1.18 Process Name: I/0 Request Has Overrun

Inputs: I/O Request Identifier

Outputs: Number of Overruns

Requirements

Reference: 1/0 User Interface Functional Requirements, Section 2.1.2

1/O User Interface Software Specifications, Section 2.2.2.5
Notes: None
Description:
If an I/O request can not be executed when its scheduling requirements have been fulfilled,
then a scheduling overrun occurs. The I/O Request Has Overrun process allows the

application to determine if an overrun has occurred.

The occurrence of an overrun is detected by the Posting task (discussed in Section 3.2.1.1)

- associated with the I/O request. A parameter (integer number) in shared memory is updated

to reflect the occurrence (or frequency of occurrences) of an overrun. This parameter is
read from shared memory and returned to the application by the I/O Request Has Overrun
process.

2.3.1.19 Process Name: Write Initial I/O Request Data
Inputs: I/O Request Identifier

Outputs: State of the Locking Semaphore
Static and Dynamic Output Data

Requirements

Reference: I/O User Interface Functional Requirements, Section 2.1.2
I/O User Interface Software Specifications, Section 2.2.2.1

Notes: None

Description:

The Write Initial I/O Request Data procedure performs a test and set operation on the
semaphore that guards the output data buffer select variable for the I/O request. If the select
region is unlocked, it selects an available buffer, unlocks the select region, and writes the
static and dynamic output data for the entire I/O request into shared memory. If the buffer

53

select region is locked, the procedure continues to perform the test and set operation until
the region becomes unlocked or 100 test and set iterations pass. If 100 iterations pass and
the select region is still locked, it is assumed that a fault has caused a deadlock situation
(select region is locked but neither processor has control of it). If such a deadlock situation
occurs, the procedure disregards the semaphore, determines the available buffer, resets the
semaphore, sets the LOCKED parameter, and writes the output data.

After the output data has been written into shared memory, the output data buffer select
variable must be updated to specify the available buffer with the most current data. The
Write Initial I/O Request Data procedure performs the test and set process as previously
described, and when the select region is unlocked, the buffer select variable (in shared
memory) is set equal to the buffer into which the output data was written.

2.3.1.20 Process Name: Wait Until IOP Completed

Inputs: IOP Completed Flag

Outputs: None

Requirements

Reference: I/0O User Interface Functional Requirements, Section 2.1.3

I/O User Interface Software Specifications, Section 2.2.3.1
Notes: | None
Description:
Flags are used to synchronize the I/O System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the I/O request Specifications.

Alternatively, the CP must wait for the IOP to initialize the I/O Services.

The Wait Until IOP Completed process allows the CP to wait until the IOP initializes the
I/O Services. . '

54

2.3.1.21 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

CP Completed

None

CP Completed Flag

I/O User Interface Functional Requirements, Section 2.1.3
I/O User Interface Software Specifications, Section 2.2.3.1

None

Flags are used to synchronize the I/O System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the I/O request specifications.
Alternatively, the CP must wait for the IOP to initialize the I/O Services.

The CP Completed process sets a flag in shared memory to acknowledge the completion of

I/O request creation process. -

2.3.1.22 Process Name:
Inputs:
Outputs:

Requirements
Reference:

Notes:

Description:

Wait for Specification Received
Ready for New Specification Flag

None

None

None

The Wait for Specification Received process polls the Ready for New Specification flag
until it is set (true). The process is used to synchronize the I/O System Services on the CP
and IOP during the interprocessor communication of the I/O request specifications.

35

2.3.2 /O System Services Application Log

I10SS_APPLICATION_LOG

(LOG_RANGE)

LOG_ERROR

1
DISPLAY_ERROR_LOG

L)

2.3.2.1 Process Name: Log Error

Inputs: Application Log Identifier
Node Identifier
Error Test String
Error Description String

Outputs: Entry in Application Log
Requirements

Reference: None

Notes: None

Description:

The Log Error process logs the Application Log Identifier, Node Identifier, Error Test
string, and Error Description string in an Application Log (identified by the Log ID). An
Application Log is a 15 line cyclic log which is used to record information associated with
the application processes, I/O request processing, and interprocessor communication.

56

2.3.2.2 Process Name: Display Error Log

Inputs: Application Log Identifier
Outputs: None

Requirements

Reference: None

Notes: None

Description:

The Display Error Log process displays the contents of the Application Log which is
identified by the Application Log identifier.

57

2.4 1/O User Interface Data Dictionary
Chain ID Type: The range of possible values for a chain ID (0 - Maximum Chain ID).

ID Array : A variant record type available to the applications user for the creation of arrays
of transactions or chains. The applications programmer must use this record to group
transactions into a chain and chains into an I/O request.

I/O Request ID Type: The range of possible values for an I/O request ID (0 - Maximum
IOR ID).

I/0 Request Scheduling Record : A discriminate record available to the applications user
for specifying scheduling parameters for an I/O request. The record always has fields
indicating the completion event, I/O request time out, and priority of the I/O request. The
record is discriminated on a two state variable indicating the type of I/O request (on demand
or periodic). If the I/O request is periodic, then fields indicating its period, how it will be
started, and how it will be stopped must also be provided.

Maximum Chain ID : An integer constant which specifies the maximum number of chains.

Maximum IOR ID : An integer constant which specifies the maximum number of I/O
requests.

Maximum Transaction ID : An integer constant which specifies the maximum number of
transactions.

Periodic Scheduling Record : A discriminate record available to the applications user for
specifying start parameters for a periodic I/O request. The record is discriminated on a
three state variable indicating how the periodic I/O request should be started
(Start_On_Demand, Start_After_Delay, or Start_At_Absolute_Time). If the discriminate is
Start_After_Delay or Start_At_Absolute_Time, then information concerning the delay or
specific start time, respectively, must also be provided.

Transaction ID Type: The range of possible values for a transaction ID (0 - Maximum
Transaction ID).

Transaction Information Record : A discriminate record available to the applications user
for specifying I/O parameters for a transaction. The record always has fields indicating the
destination DIU, number of output data bytes, type of output data (dynamic or static), and
local CP address of the application output data buffer. The record is discriminated on a two
state field indicating the type of transaction (input or output). If the transaction is an input
transaction, then fields indicating the number of input data bytes, maximum number of

58

. L

errors before bypass, time out, and local CP address of the application input data buffer
must also be provided.

59

3.0 YO COMMUNICATIONS MANAGEMENT

The description of the I/O Communications Management is divided into three sections:
Functional Description, Software Specifications, and Software Process Descriptions.

3.1 /O Communications Management Functional Description
[/O Communications Management provides the processes necessary to control the flow of

data between the GPC and the various I/O networks used by the GPC. This work is
divided between two functions, I/O Traffic Control and I/O Low Level Utilities.

I/0 COMMUNICATIONS
MANAGEMENT

1/0 TRAFFIC I/0 LOW LEVEL
CONTROL UTILITIES

v v

The function of the I/O Traffic Control includes the processing that must be done to place
an I/O request in its proper place in the priority queue of a given network and to transfer
data between shared memory and its correct location in the dual ported memory of the IOS.
In addition, the I/O Traffic Control function coordinates the simultaneous execution of
chains on an I/O service which has redundant networks and processes any errors detected
during the execution of the I/O request.

The Low Level Utilities are responsible for congruently distributing inputs to the redundant
channels of the GPC, voting output data, and screening input data for errors. This error
processing involves error detection (including chain time out and byte count errors) and
error logging. The Low Level Utilities function is also responsible for performing the
correct physical to logical mapping for each network on the GPC.

3.1.1 YO Traffic Control

The main responsibilities of the I/O Traffic Control process are to manage the 1/O request
queues associated with each I/O service accessible by the GPC, to cause chains in an I/O
request to be executed, and to process any errors which occurred during chain execution.
Accordingly, the I/O Traffic Control process is divided into three functions: Queue
Management, I/O Request Execution, and I/O Request Completion.

PRECEDING PAGE BLANK NOT FILMED 61 |
| eacE, b 0 _intentioNaLLY BLANK

I/0 TRAFFIC
CONTROL

QUEUE I/0 REQUEST I/0 REQUEST
MANAGEMENT EXECUTION COMPLETION

3.1.1.1 Queue Management

I/O requests are conducted on an I/O service. These I/O services may be regional or local,
and if they are local, they may involve a set of redundant networks. A GPC can only post
I/O requests to I/O services to which it is connected. A list of all the I/O services accessible
by a GPC is available in its local I/O database.

The Queue Management function initializes each I/O service that is connected to the GPC.
The initialization of an I/O service means that the network and data structures associated
with the service are initialized, the service is grown, and the tasks required by the service
are activated. Accordingly, the Queue Management process activates a Queue Manager task
for each I/O service, schedules a Posting task for each I/O request, and constructs a set of
priority queues for each Queue Manager task.

The primary role of the Queue Management process is to create and manage a set of priority
~ queues for each I/O service in the local database. Each priority queue holds a prioritized list
of service requests (e.g. a network restoration request, spare element cycling request, or
I/O request) for that I/O service. The Queue Management process must provide a way to
post a service request to an I/O service, to supply the next service request which should
execute on that service, and to indicate that no requests are pending.

The Queue Management process activates an I/O Posting task for each I/O request created
by the application. A Posting task is a task that is scheduled on the IOP based on the
scheduling requirements of the 1/O request. When the scheduling requirements of the I/O
request are met, the Posting task posts a service request to the correct priority queue of the
appropriate I/O service.

A Queue Manager task is activated for each I/O service. This task controls all access to the
I/O service. If I/O requests are pending, the Queue Manager task accepts the I/O request
with the highest priority, invokes the I/O Request Execution function, and calls the I/O
Request Completion process. If a fault in an I/O network causes errors to occur in the I/O
request, then the Queue Manager task takes the appropriate network out of service and calls

62

the network manager FDIR. If no I/O requests are pending, then the Queue Manager can
accept service requests to cycle the spare components of the I/O service. In addition, the
Queue Manager task controls the modification of the I/O chains (transaction
selection/deselection) and the restoration of failed network elements.

3.1.1.2 T/O Request Execution

Each I/O service requires a Queue Manager task to control the execution of I/O requests on
that service. Whenever an I/O service is "ready” or "idle" and any I/O requests have been
posted to that service, the Queue Manager task will begin to process the pending I/O
request which has the highest priority.

When an I/O request has just completed on a service, that service is designated as "ready";
that is, ready to begin another I/O request. If one or more I/O requests are pending at that
service, the request with the highest priority will be started as soon as the service becomes
ready. However, if no request is pending at a service when it becomes ready, the I/O
service is considered "idle". An I/O request which is posted to an idle I/O service will be
started immediately. This scheme is intended to achieve a high degree of I/O service
utilization by eliminating unnecessary delays in starting I/O request execution.

An I/O service may utilize only one network or it may require a set of parallel redundant
networks. Within each service, a given network may be in or out of service. Typically, a
network will be out of service for one of two reasons: it has not yet been grown by its
network manager or a fault(s) exists in the network causing it to be pulled out of service to
allow FDIR activity to proceed. While a network is out of service, user chains will not be
executed on the network but manager chains, of course, will be allowed. If the service is
not redundant, user chains will not be executed until the network is back in service.
However, if the service is redundant, the unfailed networks will remain in service while

FDIR is conducted on the network which experienced errors. Thus, user chains in the
unfailed networks will continue to execute at their normal rate, unimpeded by the repair

activity of the FDIR processes. This scheme is intended to provide an application with an
uninterrupted flow of 1/O data even in the presence of hardware faults (when a redundant
I/O service is part of the system).

Another aspect of I/O Request Execution is updating, whenever necessary, the chain
program or set of redundant chain programs in dual ported memory. This is necessary to
support the transaction selection/deselection option open to a user and the transaction
bypassing feature available to the I/O System Services. The I/O System Services may
bypass a particular transaction if it is repeatedly the source of errors and the application
allows that transaction to be bypassed.

To bypass or deselect a transaction, the chain program is modified so that the IOS will skip
over the set of instructions used to execute the deselected transaction. To select a

63

transaction, the chain program is modified so that the IOS will not skip the relevant set of
instructions. A chain program consists of a header and a linked list of transactions. The
header contains instructions that affect the entire chain such as the polling priority and
number of residual bits, and it ends with a branch instruction to the first transaction of the
chain. Each transaction in the linked list is a sequence of IOS instructions which ends with
a branch instruction to the first instruction of the next transaction or to an end of chain
program (which causes the IOS to get ready for another command from the interface
command register). To deselect a specific transaction N, the operand of the branch
instruction of the transaction that precedes transaction N is modified to point to the
transaction that succeeds transaction N. To select a specific transaction N, the operand of
the branch instruction of the transaction that precedes transaction N is modified to point to
transaction N, and the operand of transaction N's branch instruction is set equal to its
preceding transaction's branch operand.

Another function of I/O Request Execution process is the transfer of output data from
shared memory to dual ported memory (DPM) of the I0S. The output data for a
transaction must be written to the DPM of the IOS prior to the execution of the command
frame of the transaction, that part of a transaction which carries data from the GPC to the
DIU. Command frames may be static or dynamic. Data for static command frames are
updated only once, whereas data for dynamic command frames are updated each time the
chain executes. When a chain contains only static command frames, the entire chain is
designated as having static output. This designation saves processing time since each
transaction does not need to be tested to determine whether or not it contains a dynamic
command frame. Similarly, when a chain contains only dynamic command frames, the
entire chain is designated as having dynamic output. Again, processing time is saved,
since the data transfer can take place without a test of whether or not a transfer is necessary.
Chains with both dynamic and static command frames are designated as mixed. This type
of chain requires additional processing time and, where performance is a factor, should be
avoided.

Once the output data and chain program for all the chains in the I/O request have been
updated, the IOS is commanded to start the chains by means of a word written to the
interface command register (ICR) of the IOS. In the case of redundant chains, this
command must be written to more than one ICR and should be performed with the shortest
possible delay between writes. If possible, the commands should be written
simultaneously. If not, they should be written with consecutive machine instructions from
the GPC. After starting the chains in the I/O request, the I/O Request Execution process is
complete.

3.1.1.3 VO Request Completion

The I/O Request Completion function is triggered after the I/O request time out (the length
of time that the I/O request actively possesses an I/O network or networks during its
execution) has expired. This processing involves chain completion processing for each
chain of the I/O request. Chain completion processing entails chain error processing, chain
error logging, transaction error processing, transaction error logging, and the transfer of
transaction input data from DPM to shared memory. After the completion processing for
the I/O request is finished, the application is signalled that the I/O request has completed
and the data in shared memory is readable.

3.1.2 T/O Low Level Utilities

The I/O Low Level Utilities perform source congruency and error detection on inputs from
external devices and consistent error free outputs to external devices. They are also
responsible for the mapping of physical to logical devices (nodes, links, DIUS) and the
assurance that a consistent network database exists for each I/O network attached to the
GPC. The I/O Low Level Utilities are made up of four functional modules: Input Source
Congruency, Output Voting, Error Processing, and Database Operations.

I/0 LOW LEVEL
UTILITIES

INPUT SOURCE ERROR
CONGRUENCY PROCESSING

OUTPUT DATA BASE
VOTING OPERATIONS

The I/O Low Level Utilities are used by both the I/O Redundancy Management and /O
Communications Management. They record and report communication errors to both
functions.

65

3.2 The /O Communications Management Software Specifications

As specified in Section 3.1, the I/O Communications Management is divided between two
functions: 1/O Traffic Control and I/O Low Level Utilities.

The I/O Traffic Control process is responsible for allocating and initializing the tasks that
control the processing of the I/O requests. These tasks include the Posting tasks, priority
queue processes, and Queue Manager tasks. The I/O Traffic Control function is also
responsible for initializing the I/O services, executing the I/O requests, and I/O Request
error processing.

The I/O Low Level Utilities are responsible for supporting source congruency on the
inputs, voting on the outputs, and fault masking.

3.2.1 I/O Traffic Manager

As previously discussed in the I/O Communications Management Functional
Requirements, the I/O Traffic Manager is divided into three sections: Queue Management,
I/O Request Execution, and I/O Request Completion. The I/O Queue Management process
is responsible for initializing the I/O services, activating the Posting tasks, and managing
the priority queues. The I/O Request Execution function is responsible for execution of the
chains of the I/O requests, while the I/O Request Completion function is responsible for the
error processing and logging required by the 1/O requests.

3.2.1.1 Queue Management

The Queue Management process accesses the local I/O database to determine the 1/O
services to which the GPC is connected. A Queue Manager task is allocated for each 1/O
service, and each task initializes its corresponding I/O service. The initialization of an I/O
service involves the initialization of the IOSes, I/O networks, and priority queues of the
service. The Queue Manager task loads the dual ported memory of the IOSes with the I/O
chains and output data specified by the application. The task then waits for the associated
I/O network Managers to grow the I/O networks of the service. After the networks are
active (the state of each network is "in_service") and all of the I/O request specifications
have been communicated to the IOP, the Queue Manager constructs and initializes the
priority queues. In addition, it schedules the Spare Link Cycling task (if enabled by the
application) and activates the Posting tasks. When the 1/O service has been initialized, the
Queue Manager sets a flag in shared memory to notify the I/O System Services on the CP.

The initialization of an IOS involves partitioning the program region of the IOS into a
header section and a linked list of transaction modules. Each transaction section of the IOS
is used by only one chain, whereas the header section is used by all chains. The
initialization of the IOS program region entails the linking of the transaction sections to

66

make the chains. The linking of the transactions is accomplished by modifying each
transaction's branch instruction to point to the next transaction in the chain or to the end of
the chain program.

The I/O requests are assigned a priority of 0 through 7 (where priority 0 is the lowest and
priority 7 preempts priorities through 6). An I/O request priority queue is constructed to
control the processing of the I/O requests. The number of records in the queue is equal to
the number of I/O requests that are created by the application for the I/O service. Each
record has three fields: the [/O request ID, a boolean flag which indicates whether or not the
scheduling requirements for the request have been met, and a pointer to the next record in
the queue. The I/O request priority queue is a linked list of I/O request records and its
ordering is based on the priorities of the I/O requests (the highest priority request is first,
the lowest last, etc.).

The Queue Manager task must manage three queues of service requests for the /O service.
These queues are the I/O request priority queue (previously described), spare component
cycling queue, and restoration queue. The Queue Manager task accepts service requests
posted to each queue, removes service requests for processing, and indicates when a
priority queue is empty. In addition, the task determines the next service request to be
processed. The Queue Manager determines the request to be serviced in the following
manner:
a) Process any preempted I/O requests.
b) Process the highest I/O request pending.
¢) If an I/O request with a priority of O - 6 is being processed and an I/O request
with a priority of 7 is posted, preempt the request being executed and process
the priority 7 request.
d) If no I/O requests are pending and a cycle spare link command is posted, cycle
the spare link.
e) If a spare link is being cycled and an I/O request is posted, preempt the cycling
request and process the I/O request.
f) If no I/O requests are pending and a restore element command is posted,
restore the network element.

Each I/O request that is created by the application has a corresponding Posting task that
executes on the IOP. A Posting task is a task that is scheduled through the GPC Real Time
Operating System based on the scheduling requirements of the I/O request. The Posting
task is activated by the Queue Manager task during initialization and is blocked until its
scheduling requirements of the I/O request are met. When scheduling requirements have
been fulfilled, the Posting task sets an execution flag in the I/O request priority queue and
calls the Queue Manager task (posts a service request). The task is then blocked until the
Queue Manager task accepts the service call. After the I[/O request has been accepted, the
Posting task checks to see if an overrun has occurred, updates the overrun parameter in

67

shared memory to reflect the number of overruns that have occurred, and loops back to
again wait for scheduling requirements of the I/O request to be met.

After the priority queue process and posting tasks have been initialized, the Queue Manager
task waits until a service request is posted. When more than one service request is
pending, the task determines the next service request to be processed. If the service request
accepted is an I/O request, the Queue Manager task invokes the I/O Request Execution
function to execute the request and the I/O Request Completion function to process the
corresponding input response (if necessary). Alternatively, if the service request accepted
is a spare component cycling or restore command, the associated I/O network (or
networks) is taken out of service and the corresponding network manager(s) is called to
execute the request.

3.2.1.2 YO Request Execution

The I/O Request Execution function is invoked by the Queue Manager task after an 1/O
request sent to the /O service has been accepted. An I/O service may utilize one network
or a set of parallel redundant networks. Each network is either in_service,
temporarily_out_of_service, repaired, or permanently_out_of_service. The network is
in_service during no fault operation. The network is temporarily_out_of_service when the
network FDIR is invoked, while network components are restored, or during spare
component cycling. The network is repaired after the network FDIR has completed, a
network element has been restored, or a spare component has been cycled. The network is
permanently_out_of_service when it is unreachable from the GPC. The network is set to
in_service from repaired and to temporarily_out_of_service from in_service by the Queue
Manager task. The network is set to repaired (or permanently_out_of_service) from
temporarily_out_of_service by the network manager tasks. If the network is in_service or
repaired, the chains can be executed on the network whereas, if the network is
out_of_service (either temporarily or permanently), they can not be executed on the
network.

The control flow of the /O Request Execution function (along with the 1/O Request
Completion function) is illustrated in the Figure 11. The bold path depicts the no fault
control path. '

The I/O Request Execution function initially checks the transaction selection/deselection
shared memory flags to determine if there are any transactions to be selected or deselected.
If either of the flags is set, the Request Execution function follows the selection/deselection
procedure outlined in Section 2.2.2.3. If the flag is not set, then the function begins
processing the /O request.

68

CHECK FOR TRANSACTION SELECTION/DESELECTION
| WRITE OUTPUT DATA TO ALL CHANNELS

CHECK CHANNEL CONFIGURATION

N’?f:
.&"’Mwm“w‘ s,

START VO REQUEST SWITCH ROOT LINK ™~
CHECK CHANNEL CONFIGURATION
‘. FAILED ¢
WAIT UNTIL VO REQUEST
.\(\‘\"-‘-..
CHAIN
AX\LX"‘-‘:.:..-,' F AILED -.‘\.:\-:.‘.:\-‘J\é‘n.t
"\,\% N
WRITE DATA TO SWITCHROOTLINK CHECK CHANNEL CONFIGURATION
SHARED MEMORY A
FROM Im ‘:’\"‘q\l
. FAILED
'\"\%
'\“.:x

SWITCH ROOT LINK

CHECK CHANNEL CONFIGURATION

%"m
ON-LINE ", FAILED
K\\é.
PROCESS DATA ROOT LINK SWITCH
MNMWMM
ERRORS . ERRORS
SET COMPLETION CHECK CHANNEL
EVENTANDOR _ CONFIGURATION;
COMPLETION FLAG “#~.. INVOKE NETWORK
FDIR

Figure 11. Control Flow for I/O Request Execution and Completion

69

The processing of the I/O request begins with the loading of the I0Ses of the I/O service
with the dynamic output data (both the static and dynamic data must be written if the I/O
request is being executed for the first time). To write the output data to the DPM of the 10S
from shared memory, the I/O Request Execution process performs a test and set operation
on the semaphore that guards the output data buffer select variable for the I/O request. If
select region is unlocked, the procedure selects/locks the available buffer, unlocks the select
region, calculates a sumcheck over the data, and writes the output data and sumcheck to the
I0S. If the buffer select region is locked, the procedure continues to perform the test and
set operation until the region becomes unlocked or 100 test and set iterations pass. If 100
iterations pass and the select region is still locked, it is assumed that a fault has caused a
deadlock situation (region is locked but neither processor has control of it). If such a
deadlock situation occurs, the procedure disregards the semaphore, determines the available
buffer, resets the semaphore, calculates the sumcheck, and writes the output data and
sumcheck to the IOS.

After the output data has been written from shared memory to IOS, the output data buffer
select variable must be updated to unlock the output data buffer. The I/O Request
Execution process performs the test and set process as previously described, and when the
select region is unlocked, the buffer is unlocked by modifying the select variable in shared
memory .

After the output data buffer is unlocked, the channel configuration is checked to see if the
channel(s) executing the I/O request is on-line. If the channel is not on-line, the root link is
switched until either an active root link is found or the corresponding network(s) is
determined to be unreachable. If the channel is on-line, the I/O request is prepared for
execution by setting up each chain of the I/O request. The set up procedure involves
several steps:
a) The modification of the branch instruction of the header to point to the first
transaction of the chain.
b) The modification of the poll instruction in the header of the chain to start
immediately if the associated network is local or start with a poll otherwise.
¢) Clear the Chain Status Register.
d) Set the Solicited Chain Pointer of the IOS to point to the header of the chain.

After the completion of the chain setup procedure, the chains of the I/O request can be
executed. To execute a chain, an execute command is written to the Interface Command
Register (ICR). In the case of two redundant chains, the execution commands are written
in consecutive machine instructions. In the case of three or more redundant chains, the
commands are written in a "tight" machine instruction loop.

As previously discussed in Section 3.2.1.1, I/O requests with a priority of 7 preempt lower

priority I/O requests. A check for pending priority 7 requests is made before the output
data for an I/O request is written to the IOS. In addition, a similar check is performed

70

prior to the I/O request being executed. If a priority 7 I/O request is pending and a lower
priority request is being processed, the state of the lower priority request is saved, the
request is suspended, and the pending request is processed. When the processing of the
priority 7 I/O request has completed, the state of the preempted request is restored and
processing of the request is continued.

During the execution of an I/O request, the I/O request must actively possess the network
for a specific amount of time; that is, the I/O request time out. Accordingly, the Queue
Manager must wait for the I/O request time out to expire before it can invoke the I/O
Request Completion function.

3.2.1.3 I/O Request Completion

The control flow for the I/O Request Completion function is illustrated in Figure 11.
Initially, the I/O Request Completion function checks the channel configuration and the
chain complete bit of the Chain Status Register. If the configuration check detects that the
channel has failed, then the root link is switched. If the channel is on-line and the chain did
complete, then the input data returned by the 1/O request is written into shared memory
from the DPM of the I0S (using a process similar to the Write I/O Request procedure -
Section 2.3.1.6).

After the input data has been written to shared memory, the channel configuration is again
checked. If the configuration check detects that the channel is down, then the active root
link is switched. If the channel is on-line, then the data is processed for errors. The error
detection process (I/O Low Level Utilities) checks for transmission, byte count, and
sumcheck errors. The error logging process sets shared memory flags to notify the
application of any chain and/or transaction errors that result. If any errors are detected, the
channel configuration is checked and the data exchange tests are performed.

To support the I/O request preemption capability, a check for priority 7 requests is made
before the input data is written to shared memory. If a priority 7 I/O request is pending and
a lower priority request is being processed, the state of the lower priority request is saved,
the request is suspended, and the pending request is processed. When the processing of
the priority 7 I/O request has completed, the state of the preempted request is restored and
processing of the request is continued.

After the error processing has been completed, the I/O completion flag for the I/O request is

set. In addition, if the application selects the completion event option during the creation of
the I/O request, the I/O completion event is signalled.

71

3.2.2 1/O Low Level Utilities

As discussed in Section 3.1.2, the I/O Low Level Utilities is made up of four functional
modules: Input Source Congruency, Output Voting, Error Processing, and Database
Operations.

The Input Source Congruency function is implicitly preformed by the shared data exchange
hardware.

The Output Voting is performed by writing data (bytes or words) into a data exchange
transmit register (see [1] for a detailed description). The I/O Communications Management
and Redundancy Management processes use this register to vote all output data written to
the IOSes.

The Error Processing capabilities of the GPC are used to determine I/O network errors. /O
network errors are determined by analyzing status information returned by the network
nodes. This error information is used by the I/O Communications Management and
Redundancy Management functions.

The Database Operation function is used by the /O Communications Management and I/O
Redundancy Management function to access information in the I/O database concerning the
I/O services supported by the GPC site. It is responsible for the mapping of physical to
logical devices (nodes, links, DIUS) and the assurance that a consistent network database
exists for each I/O network attached to the GPC.

72

3.3 I/O Communications Management Software Process Descriptions

The I/O Communications Management Software Process Descriptions divide the
description of the /O Communications Management into functional packages. This section
uses Booch diagrams and process descriptions to present the Software Specifications in
more detail. The Booch diagrams are used to map the I/O Communications Management
Software Specifications into functional packages, tasks, and subprograms. The process
descriptions are used to describe these functional groups in detail.

The I/O Communications Management is divided into ten functional packages:

1)
2)
3)
4)
5)
6)
7)
8)
9)

I/O System Services Queue Manager

I/O System Services IOP Construct I/O Requests

I/O System Services IOP Main Initialization

I/O System Services Communication of Specifications Task
I/O System Services Posting Tasks '

I/O System Services IOP Powerup

I/O System Services Global Memory Utilities

I/O System Services Shared Memory Allocation

T/O System Services Dual Ported Memory Map

10) I/O System Services Private ID Types

73

3.3.1 /O System Services Queue Manager

I0SS_QUEUE_MGR h

| RESTORE_NODE_OR_LINK
1

QUEUE_MGR_TASK
——

UPDATE_IOS_AFTER_RESTORE

SM_TO_DPM_SCHK

1
DPM_TO_SM_SCHK
1

SETUP_CHAIN

EXECUTE_IOR

1
CHECK_FOR_COMM_ERRORS
L
PROCESS_IOR_CALL
1
'EXEC_IOR_CALL

! I

UPLOAD_IOR_CALL
1
SPARE_LINK_TEST
1
INITIALIZE_IO_SERVICE

ADD_TO_LIST

|
INITIALIZE_IOR_QUEUE
! I

1 DETERMINE_NEXT_IOR
|\ Y,

74

3.3.1.1 Process Name: Restore Node or Link

Inputs: I/O Network Identifier
Node Identifier
Port Identifier
Type of Restoration
Outputs: Confirmation that Restoration was Accepted

Restoration Service Request

Requirements

Reference: I/O Communications Management Software Specifications,
Section 3.2.1.1

Notes: None

Description:

The Restore Node or Link process posts a restoration service request to the Queue Manager
task. Initially, the process determines if the request is to restore a node or link. Next, the
service request is posted to the restoration priority queue. If the Queue Manager is not
processing a different service request, the restoration request is accepted and processed. If
the Queue Manager is processing a different service request, the restoration request is
retracted. The service request is retracted to avoid the possibility of the Restore Node or
Link process being endlessly blocked if the Queue Manager is busy processing other jobs
(restoration is a low priority job). If the service request is retracted, the process delays for
one second and resubmits the request. If the Queue Manager can not accept the second
request, the process delays again for a second time and then resubmits the request a third
time. If the third request is not successful, then the Restore Node or link process notifies
the calling process that the restoration was not accepted. If the restoration request was
accepted in one of the three tries, then the process notifies the calling process that the Queue
Manager accepted the request.

75

3.3.1.2 Process Name: Queue Manager

Inputs: 1I/O Request Hierarchical Database
I/O Network Identifier
I/O Transaction Identifier
I/O Request Output Data
/O Transaction Selection or Deselection Record
I/O Network Restoration Record
Current Channel
Network State
Channel Configuration
I/O Service Configuration

Outputs: I/O Network Identifier
Network State
I/O Request Errors
I/O Request Input Data
Current Channel
Connected Networks
I/O Network Restoration Record
10S DPM Address Pointer
1/O Transaction Identifier

Requirements

Reference: /O Communications Management Functional Requirements,
Section 3.1.1
/O Communications Management Software Specification,
Section 3.2.1.1

Notes: None
Description:

The Queue Manager task is a process that controls the Queue Management, I/O Request
Execution, and I/O Request Completion functions associated with a particular I/O service.
The Queue Management function constructs and manages a set of priority queues and
initializes the I/O service. The I/O Request Execution function writes the dynamic output
data from shared memory to the appropriate IOSes, updates the chain headers, and executes
the I/O request. The I/O Request Completion function checks for the occurrence of errors
and writes the input data from the DPM of the IOS to shared memory.

76

The Queue Manager task is blocked until the I/O System Services on the CP has
communicated all of the I/O request specifications to the IOP and the companion I/O request
records have been constructed. The task then constructs an I/O request priority queue
using the priorities assigned to the requests. The I/O requests with the higher priorities are
placed closer to the front of the queue whereas those with the lower priorities are placed
nearer to the bottom.

After the I/O request priority queue is created, the Queue Manager task creates the priority
queues (FIFO) for the spare link cycling and restoration processes. In addition, the I/O
chains are constructed, and the spare link cycling task is scheduled. The construction of
the I/O chains involves the modification of branch instructions to link the transaction
program modules into a chain module. This procedure also initializes the 1/O data pointers
and output data buffers. The spare link cycling task is scheduled as a background task, and
it periodically posts a reconfiguration service request to the I/O service.

The I/O requests can not be scheduled until the I/O networks associated with the I/O service
are grown. The growth of the I/O networks is performed by the I/O Network Managers,
and the Queue Manager waits until these I/O networks are in_service. After the growth of
the networks is complete, the Queue Manager task schedules an I/O Posting task for each
I/O request created by the application. The Posting task is scheduled on the IOP in the
manner specified by its corresponding I/O request. When the scheduling requirements of
an I/O request have been met, the associated I/O Posting task sets an execution flag in the
I/O request priority queue and calls the Queue Manager task (posts a service request).

After the I/O Posting tasks have been scheduled, the Queue Manager task sets a flag to
notify the CP application tasks that the initialization of the I/O service has completed. At
this time, the application tasks can start any on demand 1/O requests.

The Queue Manager task controls access to the I/O service. Several processes contend for
the service. These processes are:

1) The execution of an I/O request.

2) The cycling of a spare link.

3) The restoration of a node or link.
Each of the contending processes posts a service request to its associated queue when its
scheduling requirements have been fulfilled. The service request to be next processed by
the Queue Manager task is selected based on priority scheme described in Section 3.2.1.1.

If an 1/O request is accepted by the Queue Manager task, then the I/O Request Execution
function is called to process the request. The processing of an I/O request involves several
steps. Initially, a check is made to determine if there are any transactions to be selected or
deselected. Secondly, the dynamic output data is written from shared memory to the DPM
of the IOSes (the static output data is also written if the /O request has not been previously
executed) and the chain headers are initialized to point to the first transaction of the I/O

77

chains. After the headers have been updated, the I/O request is executed. The I/O request
is started by writing a command to the Interface Command Register (ICR) of an IOS. In
the case of two redundant chains, the execution instructions are written in consecutive
machine instructions to two IOSes. In the case of three or more simultaneous chains, the
commands are written in a tight machine instruction loop (to multiple IOSes) to minimize
the delay between the writes while allowing the flexibility of variable size I/O requests.
After the I/O request execution has started, the Queue Manager task waits until the I/O
request time out has expired. At this time, the Queue Manager task invokes the I/O Request
Completion process to perform error checking (byte count, transmission, and sumcheck),
notify the application of the occurrence of errors, bypass the transactions which have
exceeded their maximum error limitations, invoke the network FDIR (if necessary) and -
write the input data from the DPM of the I0Ses to shared memory. After the input data has
been written, the processing of the 1/O request is finished, and the Queue Manager task
notifies the associated CP application of the completion of the I/O request using a
completion event and/or flag.

The processing of a spare link cycling service request involves two steps: the collection of
node status from the I/O networks of the I/O service and the reconfiguration of the virtual
circuit path if there are not any errors in the networks. The collection of node status
information is required to determine if all of the expected network nodes are reachable prior
to reconfiguration. If one or more of the nodes does not send its status or sends
inconsistent status (inconsistent with the I/O network topology database), then a network
fault is assumed to exist. If a fault is present in a network, the network is taken out of
service and a repair request is sent to the associated I/O Network Manager task. In the case
of redundant networks, this status collection is performed in near simultaneous manner
similar to the execution of simultaneous I/O chains. If there are not any errors in the /O
service, then a spare link of each I/O network is made active by reconfiguring the virtual
path. If redundant networks are involved, the reconfiguration is performed in near
simultaneous manner.

The processing of a network element (link or node) restoration service request involves
sending a restore request to the appropriate 1/O Network Manager task.

The Queue Manager accepts service requests from the contending processes until it is
descheduled.

78

3.3.1.3 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Update I0S After Channel Restoration
None

Restore IOS Data Flags

I/O Communications Management Software Specifications,
Section 3.2.2

None

The Update IOS After Channel Restoration process sets the Restore IOS Data flags to
notify the Queue Manager that the static output data for the I/O requests must be restored.
The loss of a channel due to a fault may cause the data in the IOS to be corrupted. Since
the static data is not updated each time an I/O request is processed, the data must be updated

when the channel is restored.

3.3.1.4 Process Name:

Inputs:

Outputs:

Requirements

Reference:

Notes:

Description:

Shared Memory to DPM with Sumcheck

Chain Identifier
User Program and Data Pointer
Output Data

Value of Locking Semaphore
Voted Output Data

Voted Sumcheck

Voted Number of Data Bytes

I/O Communications Management Software Specifications,
Section 3.2.1.2 '

None

The Shared Memory to DPM process updates output buffers of the DPM of the IOSes.

. The output data has been written into shared memory by the application. The process

updates the dynamic output data each time a chain is executed. The process updates the

79

static output data prior to the first execution of the chain and after a chain error has
occurred.

The Shared Memory to DPM process performs a test and set operation on the semaphore
that guards the output data buffer select variable for the I/O request. If select region is
unlocked, the procedure selects/locks the available buffer, unlocks the select region,
calculates a sumcheck over the data, and writes/votes the output data and sumcheck to the
IOS. If the buffer select region is locked, the procedure continues to perform the test and
set operation until the region becomes unlocked or 100 test and set iterations pass. If 100
iterations pass and the select region is still locked, it is assumed that a fault has caused a
deadlock situation (region is locked but neither processor has control of it). If such a
deadlock situation occurs, the procedure disregards the semaphore, determines the available
buffer, resets the semaphore, calculates a sumcheck over the data, and writes/votes the
output data and sumcheck to the IOS.

After the output data has been read from shared memory, the output data buffer select
variable must be updated to unlock the output data buffer. The Shared Memory to DPM
process performs the test and set procedure as previously described, and when the select
region is unlocked, the buffer is unlocked by modifying the select variable in shared
memory . '

3.3.1.5 Process Name: DPM to Shared Memory with Sumcheck
Inputs: Chain Identifier
User Program and Data Pointer
Input Data
Outputs: Value of Locking Semaphore
Array of Transaction Data Sumchecks
Input Data
Requirements
Reference: I/O Communications Management Software Specifications,

Section 3.2.1.2
Notes: Noné
Description:
The DPM to Shared Memory process reads input data from the DPM of the IOSes and
updates the shared memory input data buffers. The input data is the response from a DIU

to a request given by the application. The process updates the shared memory input data
buffers each time an input response from an /O request is received.

80

The DPM to Shared Memory process performs a test and set operation on the semaphore
that guards the input data buffer select variable for the I/O request. If the select region is
unlocked, it selects an available buffer, unlocks the select region, calculates a sumcheck
over the data, resets the Old Data flag (notifying the CP that the input buffers have been
updated since the previous data read), and writes the input data for the entire I/O request
into shared memory. If the buffer select region is locked, the procedure continues to
perform the test and set operation until the region becomes unlocked or 100 test and set
iterations pass. If 100 iterations pass and the select region is still locked, it is assumed that
a fault has caused a deadlock situation (select region is locked but neither processor has
control of it). If such a deadlock situation occurs, the procedure disregards the semaphore,
determines the available buffer, resets the semaphore, calculates a sumcheck over the data,
resets the Old Data flag (notifying the CP that the input buffers have been updated since the
previous data read), and writes the input data to shared memory.

After the input data has been written into shared memory, the input data buffer select
variable must be updated to specify the available buffer with the most current data. The
DPM to Shared Memory process performs the test and set procedure as previously
described, and when the select region is unlocked, the buffer select variable (in shared
memory) is set equal to the buffer into which the input data was written.

3.3.1.6 Process Name: Setup Chain

Inputs: Chain Identifier
User Program and Data Pointer
DPM Program Pointer
Outputs: IOS Solicited Chain Pointer
Chain Header Branch Instruction
10S Poll Instruction
Requirements
Reference: I/O Communications Management Software Specifications,

Section 3.2.1.2
Notes: None
Description:

The Setup Chain process sets up the chain header section of the user program region in
preparation for the execution of the chain. The process involves several steps:

81

a) The modification of the branch instruction of the header to point to the first
transaction of the chain.

b) The modification of the poll instruction in the header of the chain to start
immediately if the associated chain is local or start with a poll otherwise.

¢) Clear the Chain Status Register.

d) Set the Solicited Chain Pointer of the IOS to point to the header of the chain.

3.3.1.7 Process Name: Execute I/O Request

Inputs: I/O Request Identifier

Outputs: IOS Interface Command Register

Requirements

Reference: I/O Communications Management Software Specifications,

Section 3.2.1.2
Notes: None
Description:
The Execute I/O Request process executes the 1/O request after the output data buffers have
been updated. To execute a chain, an execute command is written to the ICR of an I0S. To
execute the simultaneous chains, execute commands are written to multiple ICRs with a

minimal delay between the writes.

After the execute commands are written, the process waits until the I/O request time out has
expired.

82

3.3.1.8 Process Name:

Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Check for Communication Errors

User Data and Program Pointer
DPM Program Pointer

Array of Data Sumchecks
Chain Identifier

Active Root Link

Error in Chain Flag
Shared Memory Error Flags

I/O Communications Management Software Specifications,
Section 3.2.1.2

None

The Check for Communication Errors process determines if an error(s) occurred during the
execution of a chain and if so, it isolates and logs the type and location of the error(s). The
process checks for the following types of errors:

1) Channel failure during chain execution.
2) Chain did not complete execution.

3) Transmission Errors.

4) Byte count errors.

5 Sumcheck errors.

The Check for Communication Errors process updates several shared memory flags to
notify the application of the occurrence and type of errors. The process also determines if a
transaction should be bypassed.

If a response from a DIU has been corrupted by errors and the DIU is reachable, then the
Check for Communication Errors process calls the associated /O Network Manager
process to repair the network (except for sumcheck errors).

83

3.3.1.9 Process Name:

Inputs:

Requirements
Reference:

Notes:

Description:

Process 1/O Request Procedure Call

I/O Request Identifier
I/O Request Output Data
I0OS Status Registers
Network Status

Completion Flag

Completion Event
1/O Request Input Data

I/O Communications Management Software Specifications,
Section 3.2.1.2

None

The Process I/O Request procedure performs the I/O Request Execution and I/O Request
Completion functions, as discussed in /O Communications Management Functional
Requirements and Software Specifications. In short, the process performs the following:

1) Checks for a transaction selection/deselection request.

2) Writes the output data from shared memory to DPM.

3) Sets up the chain header(s) for the I/O request.

4) Executes the 1/O request.

5) Writes the input data from DPM to shared memory.

6) Checks for communication errors.

7) Notifies the application of the completion of the I/O request via event and/or

flag.

84

3.3.1.10 Process Name:

Inputs:

Outputs:

- Requirements

Reference;

Notes:

Description:

Execute I/O Request Procedure Call

I/O Request Identifier
IOS Status Registers
Network Status

Completion Flag

Completion Event
/0O Request Input Data

/O Communications Management Software Specifications,
Section 3.2.1.2

None

During the processing of an I/O request, checks are made to determine if the I/O request
being processed should be preempted. The I/O request should be preempted if its priority
is between 0 and 6 and a priority 7 I/O request is pending. If an I/O request is preempted,
its state is recorded to avoid unnecessary reprocessing. The Execute I/O Request procedure
is invoked when an I/O request is preempted before the it is executed. In short, the process

performs the following:

1) Sets up the chain header(s) for the I/O request.

2) Executes the I/O request.

3) Writes the input data from DPM to shared memory.

4) Checks for communication errors.

5) Notifies the application of the completion of the I/O request via event and/or

flag.

85

3.3.1.11 Process Name:

Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Upload I/O Request Procedure Call

I/O Request Identifier
IOS Status Registers
Network Status

Completion Flag

Completion Event
I/O Request Input Data

1/O Communications Management Software Specifications,
Section 3.2.1.2

None

During the processing of an I/O request, checks are made to determine if the I/O request
being processed should be preempted. The I/O request should be preempted if its priority
is between 0 and 6 and a priority 7 I/O request is pending. If an I/O request is preempted,
its state is recorded to avoid unnecessary reprocessing. The Upload I/O Request procedure
is invoked when an I/O request is preempted before the input response from the I/O request
is processed. In short, the process performs the following:

1) Writes the input data from DPM to shared memory.

2) Checks for communication errors.

3) Notifies the application of the completion of the I/O request via event and/or

flag.

86

3.3.1.12 Process Name: Spare Link Test

Inputs: Spare Link Test Count
Channel Configuration
I/O Service Database
Network Status
I0S Status Registers

Outputs: None
Requirements
Reference: I/O Communications Management Software Specifications,

Section 3.2.1.1
Notes: None
Description:

The Spare Link Test process controls the cycling of the spare links of the network(s) of an
1/O Service.

The Spare Link Cycling procedure involves two steps: the collection of node status from
the I/O networks of the I/O Service and the reconfiguration of the virtual circuit path if there
are not any errors in the networks. The collection of node status information is required to
determine if all of the expected network nodes are reachable prior to reconfiguration. If one
or more of the nodes does not send its status or sends inconsistent status (inconsistent with
the I/O network Topology database), then a network fault is assumed to exist. If a fault is
present in a network, the network is taken out of service and a repair request is sent to the
associated I/O Network Manager task. In the case of redundant networks, this status
collection is performed in near simultaneous manner similar to the execution of
simultaneous I/O chains. If there are not any errors in the I/O Service, then a spare link of
each I/O network is made active by reconfiguring the virtual path. If redundant networks
are involved, the reconfiguration is performed in near simultaneous manner.

87

3.3.1.13 Process Name:

Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Initialize T/O Service

Connected Networks
Network State

None

1/O Communications Management Software Specifications,
Section 3.2.1.1

None

The Initialize I/O Service process initializes the I/O Service associated the Queue Manager
task. The process involves constructing the user chains in the IOS, scheduling the spare
link testing task, waiting for the networks to be grown by the I/O network managers, and

scheduling the Posting tasks.

3.3.1.14 Process Name:
Inputs:

Outputs:

Requirements

Reference:

Notes:

Description:

Add to List

1/O Request Identifier

1/O Request Priority Queue

I/O Communications Management Software Specifications,
Section 3.2.1.1

None

The Add to List process adds the designated I/O request to the I/O request priority queue.
The position of the I/O request in the queue depends on the priority assigned to it by the
application. The I/O request priority queue is used to determine the next service request to

be processed.

88

3.3.1.15 Process Name: Initialize I/O Request Queue

Inputs: I/O Request Identifiers

Outputs: 1/0O Request Priority Queue

Requirements

Reference: I/0 Communications Management Software Specifications,
Section 3.2.1.1

Notes: None

Description:

The Initialize I/O Request Queue process initializes the I/O request priority queue by
ordering the I/O requests and invoking the Add to List procedure for each request. The
position of the I/O request in the queue depends on the priority assigned to it by the
application. The I/O request priority queue is used to determine the next service request to
be processed.

3.3.1.16 Process Name: Determine Next I/O Request

Inputs: I/O Request Priority Queue
Outputs: I/O Request Identifier
Queue Empty Flag
Requirements
Reference: I/0 Communications Management Software Specifications,

Section 3.2.1.1
Notes: None
Description:
The Determine Next I/O Request process determines which pending I/O request should be
next processed. The process parses the I/O request priority queue and returns the first
pending request to the Queue Manager for processing. Since the priority queue was

ordered from highest to lowest priority, the first pending entry has the highest priority.

It is possible for the I/O request priority queue to be empty. Accordingly, the process
returns a boolean flag to notify the Queue Manager that no I/O requests are pending.

89

3.3.2 I/O System Services IOP Construct I/O Requests

~)
I0SS_TOP_CONSTR_IOR

CONSTRUCT_TRANSACTION
1
CONSTRUCT_CHAIN
1
CONSTRUCT_CHAIN_HEADER
I

LL_SELECT_TRANSACTION

1
LL_DESELECT_TRANSACTION
1

RESTORE_TRANSACTION
1

RESTORE_CHAIN

WRITE_DIU_OVERHEAD |

ASSIGN_BRANCH_POINTER

L J

90

3.3.2.1 Process Name: Construct Transaction

Inputs: IOS User Program and Data Pointer
Transaction Pointers

Outputs: Transaction Output Data
Transaction Branch Instruction

Requirements

Reference: I/O Communications Management Software Specifications,
Section 3.2.1.1

Notes: ' None

Description:

To execute the I/O requests created by the application, the IOSes have to be initialized.
The program region of the IOS is partitioned into a header section and a linked list of
transaction sections. Each transaction section of the IOS is used by only one chain,
whereas the header section is used by all chains. The construction of the IOS program
region entails the linking of the transaction sections to make the chains. The linking of the
transactions is accomplished by modifying each transaction’s branch instruction to point to
the next transaction in the chain or to the end of chain program.

The Construct Transaction process initializes one transaction region in the DPM of a
specific IOS. In addition to modifying the branch instruction of the transaction module, the
Construct Transaction process allocates the I[/O data buffers necessary to satisfy the
transaction I/O requirements. The process also initializes the output data buffer and the
input and/or output data buffer pointers.

91

3.3.2.2 Process Name: Construct Chain

Inputs: IOS User Program and Data Pointer
IOS Network Manager Pointer
Chain Pointer
Outputs: Chain Header Branch Instruction
Requirements
Reference: I/O Communications Management Software Specifications,

Section 3.2.1.1
Notes: None
Description:

To execute the I/O requests created by the application, the IOSes have to be initialized.
The program region of the IOS is partitioned into a header section and a linked list of
transaction sections. Each transaction section of the IOS is used by only one chain,
whereas the header section is used by all chains. The construction of the IOS program
region entails the linking of the transaction sections to make the chains. The linking of the
transactions is accomplished by modifying each transaction’s branch instruction to point to
the next transaction in the chain or to the end of chain program.

The Construct Chain process links a set of transaction regions into a chain. This procedure
involves calling the Construct Transaction process for each transaction in the chain.

The Construct Chain process also records the address of the first transaction of the chain
which is necessary to execute the I/O request.

92

3.3.2.3 Process Name:

Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Construct Chain Header

IOS User Program and Data Pointer
Chain Pointer

Chain Header Branch Instruction
Solicited Chain Pointer
I/O Communications Management Functional Requirements,

Section 3.1.1.3

None

In order to execute an I/O request, the Solicited Chain Pointer register of the IOSes must be
initialized to pointer to the header of the chains. Since the header section of the IOS
program region is used by all chains, the branch instruction of the header section must be
modified to point to the first transaction of the chain prior to executing the I/O request. -
This procedure is completed by the Construct Chain Header process.

3.3.2.4 Process Name:

Ihputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Low Level Select Transaction
IOS User Program and Data Pointer for Writing to IOS
IOS User Program and Data Pointer for Reading from I0OS

Transaction Pointer

Transaction Branch Instructions

I/O User Interface Software Specifications, Section 2.2.2.3

None

The Low Level Select Transaction process is called by the Select Transaction procedure and
completes the low level procedures required to select a transaction. The Low Level Select
Transaction process determines the preceding and succeeding transactions to the transaction
to be selected. The preceding transaction's branch instruction is modified to point to the

93

selected transaction while the branch instruction of the selected transaction is modified to
point to the succeeding transaction.

If the selected transaction is the first transaction of the chain, then its address is recorded as
the new chain header address (the chain header address is the address written into the
branch instruction of the header section of the IOS program region prior to executing the
chain). Alternatively, if the selected transaction is the last transaction in the chain, then its
branch instruction is modified to point to the end of chain program (the end of chain
program is a sequence of instructions which saves several registers and performs the
transition from solicited to unsolicited mode).

3.3.2.5 Process Name: Low Level Deselect Transaction
Inputs: 10S User Program and Data Pointer for Writing to I0S

IOS User Program and Data Pointer for Reading from I0S
Transaction Pointer

Outputs: Transaction Branch Instructions

Requirements _

Reference: I/O User Interface Software Specifications, Section 2.2.2.3
Notes: None

Description:

The Low Level Deselect Transaction process is called by the Deselect Transaction
procedure and completes the low level procedures required to deselect a transaction.

The Low Level Deselect Transaction process determines the preceding transaction to the
transaction to be selected and then modifies its branch instruction to point to the transaction
that succeeds the transaction to be deselected. If the deselected transaction is the first
transaction of the chain, then the address of its succeeding transaction is recorded as the
new chain header address (the chain header address is the address written into the branch
instruction of the header section of the IOS program region prior to executing the chain).
Alternatively, if the deselected transaction is the last transaction in the chain, then the
branch instruction of its preceding transaction is modified to point to the end of chain
program (the end of chain program is a sequence of instructions which saves several
registers and performs the transition from solicited to unsolicited mode).

94

3.3.2.6 Process Name: Restore Transaction

Inputs: IOS User Program and Data Pointer
Transaction Pointers

Outputs: Transaction Output Data
Transaction Branch Instruction

Requirements

Reference: None

Notes: None

Description:

The Restore Transaction process initializes one transaction region in the DPM of a specific
IOS. In addition to modifying the branch instruction of the transaction module, the process
initializes the input and/or output data buffer pointers.

3.3.2.7 Process Name: Restore Chain

Inputs: 10S User Program and Data Pointer
I0S Network Manager Pointer
Chain Pointer

Outputs: None

Requirements

Reference: None

Notes: None

Description:

When a channel is restored from a failed state, the user program region of the IOSes of that
channel has to be restored. The Restore Chain process restores a chain in an I0OS by
linking a set of transaction regions into a chain (after the IOS is reinitialized). This
procedure involves calling the Restore Transaction process for each transaction in the
chain.

9

3.3.2.8 Process Name: Write DIU Overhead

Inputs: 10S User Program and Data Pointer
Transaction Pointer

Outputs: DIU Address
Encoded DIU Address
Residual Bits

Requirements

Reference: None

Notes: None

Description:

The Write DIU Overhead process initializes the data region in an I0S with the DIU
address, encoded DIU address, and residual bits for a transaction.

3.3.2.9 Process Name: Assign Branch Pointer

Inputs: IOS User Program and Data Pointers
Transaction Identifiers

Outputs: Transaction Branch Instruction

Requirements

Reference: None

Notes: None

Description:

The Assign Branch Pointer process bypasses the designated transaction by modifying the
branch instruction of the preceding transaction.

96

3.3.3 I/O System Services Main Initialization

-
- TOSS_IOP_MAIN_INIT 1

" INITIALIZE_lOSS

\

3.3.3.1 Process Name: Initalize IOSS

Inputs: None

Outputs: Queue Manager Start Command
Requirements

Reference: None

Notes: ' None

Description:

The Initialize IOSS process controls the initialization of the I/O Services. The process calls
the Powerup_IOP procedure to schedule an IOP task to allow the communication of the I/O
request specifications. The process waits for the CP to complete the communication of the
specifications and then schedules the Queue Manager task which initializes the I/O Service.

97

3.3.4 I/O System Services Communication of Specifications Task

~ ™
I0SS_COMM _SPEC_TASK

(SM_COMM_TYPE)

CSPAIRB_LINK_TESTING_TASK)

3.3.4.1 Process Name: Shared Memory Communication Task Type
Inputs: None
Outputs: Companion Transaction Records

Companion Chain Records
Companion I/O Request Records

Requirements

Reference: I/O User Interface Software Specifications, Section 2.2.1
Notes: None

Description:

The Shared Memory Communication task reads the I/O request specifications from shared
memory and creates the IOP database of companion records.

The task is scheduled on the IOP through the GPC Real Time Operating System as an on
demand process. The task is synchronized with the Create_Transaction, Create_Chain,
and Create_IOR processes which reside on the CP. The interprocessor synchronization is
achieved using an event and a flag. The event is used to signal that a transaction, chain, or
I/O request record has been written into shared memory by the I/O System Services on the
CP and can be read by the I/O System Services on the IOP. The flag notifies the CP that
the IOP has read the record.

After being signaled by the CP, the IOP Shared Memory Communication task accesses
shared memory and determines the type of record (transaction, chain, I/O request) being
communicated. The task then reads the specification record, allocates memory for the
companion record, and initializes the companion record. Finally, the task notifies the I/O
System services on the CP that the companion record is created and that another record can
be communicated.

98

3.3.4.2 Process Name: Spare Link Test Task

Inputs: None

Outputs: Spare Link Cycle Service Request

Requirements

Reference: I/O Communications Management Software Specifications,

Section 3.2.1.1
Notes: None
Description:
The Spare Link Test task posts Spare Link Cycling service requests to the Queue Manager.

It is scheduled through the GPC Real Time Operatmg System as a periodic task by the
Spare Link Test Scheduling procedure.

99

3.3.5 I/O System Services Posting Tasks

I0SS_POSTING_TASKS

(POSTING_TASK_TYPE)
1

POSTING_TASK_MANAGER

L)

3.3.5.1 Process Name: Posting Task Type

Inputs: I/O Request Identifier

Outputs: Service Request for /O Request Execution
Number of Overruns
I/O Request Preemption Flag
Spare Link Test Preemption Flag

Requirements

Reference: I/O Communications Management Functional Requirements,
Section 3.1.1.1 ’
I/O Communications Management Software Specifications,
Section 3.2.1.1

Notes: None

Description:

Each I/O request that is created has a corresponding Posting task on the IOP. A Posting
task is a task that is scheduled through the GPC Real Time Operating System based on the
scheduling requirements of the I/O request. The Posting task is activated by the Queue
Manager task during initialization'and is blocked until the scheduling requirements of the
I/O request are met. When scheduling requirements have been fulfilled, the Posting task
sets its execution flag in the I/O request priority queue and calls the Queue Manager task
(posts a service request). The task is then blocked until the Queue Manager task accepts the
call. After the I/O request has been accepted, the Posting task checks to see if it has
overrun, updates the overrun parameter in shared memory to reflect the number of overruns
that occurred, and loops back to again wait for its scheduling requirements to be met.

100

3.3.5.2 Process Name:

Inputs:
Outputs:
Requirements

Reference;

Notes:

Description:

Posting Task Manager

/O Request Identifier

None

I/O Communications Management Functional Requirements,
Section 3.1.1.1

I/O Communications Management Software Specifications,

Section 3.2.1.1

None

The Posting Task Manager allocates a Posting task for a particular I/O request and
schedules it based on the scheduling requirements of the I/O request.

101

3.3.6 I/O System Services IOP Powerup

f 3
10SS_IOP_POWERUP

POWERUP_IOP

|
IOP_COMPLETED
1
WAIT_UNTIL_CP_COMPLETED

L

SPEC_SCHEDULER
L

SLT_SCHEDULER

ACTIVATE_POSTING_TASKS
I

CONSTRUCT_USER_CHAINS

RESTORE_USER_CHAINS

3.3.6.1 Process Name: Powerup IOP

Inputs: None
Outputs: None
Requirements

Reference: None
Notes: None
Description:

The Powerup IOP process calls the Specifications Scheduler procedure to schedule the IOP
Shared Memory Communication task that accepts the I/O request specifications.

102

3.3.6.2 Process Name: IOP Completed

Inputs: None

Outputs: IOP Completed Flag

Requirements

Reference: I/0O User Interface Functional Requirements, Section 2.1.3

I/O User Interface Software Specifications, Section 2.2.3.1
Notes: None
Description:
Flags are used to synchronize the I/O System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the I/O request specifications.

Alternatively, the CP must wait for the IOP to initialize the I/O services.

The IOP Completed process sets a flag in shared memory to acknowledge the completion
of I/O service initialization process.

3.3.6.3 Process Name: Wait Until CP Completed

Inputs: CP Completed Flag

Outputs: None

Requirements

Reference: I/O User Interface Functional Requirements, Section 2.1.3

I/0O User Interface Software Specifications, Section 2.2.3.1
Notes: None
Description:
Flags are used to synchronize the I/O System Services on the CP and the IOP. The IOP
must wait for the CP to create and communicate the 1/O request specifications.
Alternatively, the CP must wait for the IOP to initialize the I/O services.
The Wait Until CP Completed process polls the CP Completed flag in shared memory

waiting for the I/O System Services on the CP to finish communicating the I/O request
specifications.

103

3.3.6.4 Process Name:
Inputs:

Outputs:

Requirements

Reference:
Notes:

Description:

Specifications Scheduler
None

None

I/O User Interface Software Specifications, Section 2.2.1.1

None

The Specifications Scheduler process uses the GPC Real Time Operating System to
schedule the IOP Shared Memory Communication task. The Shared Memory
Communication task interacts with the CP to transfer the I/O request specifications from the

CP to the IOP.

3.3.6.5 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Spare Link Test Scheduler

None

None

[/O Communications Management Software Specifications,
Section 3.2.1.1

None

The Spare Link Test Scheduler process uses the GPC Real Time Operating System to
schedule a Spare Link Test task. The Spare Link Test task posts spare link cycling service
requests to the Queue Manager task.

104

3.3.6.6 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Activate Posting Tasks
Number of 1/O Requests

None

I/O Communications Management Software Specifications,
Section 3.2.1.1

None

The Activate Posting Tasks process calls the Posting Task Manager procedure to schedule a
Posting task for each I/O Request.

3.3.6.7 Process Name:
Inputs:

Outputs:

Requirements

Reference:
Notes:

Description:

Construct User Chains

Number of I/O Chains

None

None

None

The Construct User Chains process calls the Construct Chain procedure to initialize an I0S
program region for each I/O Chain created by the application.

105

3.3.6.8 Process Name:

Inputs:

Outputs:
Requirements

Reference:
Notes:

Description:

The Restore User Chains process calls the Restore Chain procedure to restore an 10S
program region (after a channel fails and returns) for each I/O Chain created by the

application.

Restore User Chains

Number of I/O Chains
Deselected Transactions

None

None

None

106

3.3.7 /O System Services Global Memory Utilities

4 N\
10SS_GMU

(10.GLOBALMEMT)
1

CP_ALLOCATE
[

IOP_ALLOCATE

PUT

i |

GET

L

PUT_SCHK

GET_SCHK

|)

3.3.7.1 Process Name: CP Allocate

Inputs: Number of Bytes

Outputs: | Address of Buffer in Shared Memory
Requirements

Reference: None

Notes: None

Description:

The CP Allocate process reserves a region in shared memory for an I/O buffer. The
process returns the address of the buffer to the calling process.

107

3.3.7.2 Process Name: IOP Allocate

Inputs: Shared Memory Address Record
Outputs: Address of Buffer in Shared Memory
Requirements

Reference: None

Notes: None

Description:

The IOP Allocate process extracts the address of a shared memory I/O buffer from a shared
memory address record. The address record is communicated from the CP to the IOP so
that both processors know the location of the buffer.

3.3.7.3 Process Name: Put

Inputs: Number of Bytes
Destination Address (private type)
Source Address

Outputs: ’ None

Requirements

Reference: None

Notes: None

Description:

The Put process moves and votes the designated number of bytes from the source address
to the destination address. '

108

3.3.7.4 Process Name: Get

Inputs: Number of Bytes
Destination Address
Source Address (private type)
Outputs: None
Requirements
Reference: None
Notes: None
Description:

The Get process moves the designated number of bytes from the source address to the
destination address.

3.3.7.5 Process Name: Put with Sumcheck

Inputs: Number of Bytes
Destination Address (private type)
Source Address

Outputs: Sumcheck

Requirements

Reference: None

Notes: None

Description:

The Put With Sumcheck process moves and votes the designated number of bytes from the
source address to the destination address while calculating a modulus 256 sumcheck over
the data.

109 .

3.3.7.6 Process Name: - Get with Sumcheck

Inputs: Number of Bytes
Destination Address
Source Address (private type)
Outputs: Sumcheck
Requirements
Reference: None
Notes: None
Description:

The Get With Sumcheck process moves the designated number of bytes from the source
address to the destination address while calculating a modulus 256 sumcheck over the data.

110

3.3.8 /O System Services Shared Memory Allocation

I0SS_SM_ALLOCATE

NEW_SPEC_SENT
1

SEND_NEW_SPEC
|

READY_FOR_NEW_SPEC
I

CLEAR_COMPLETION_FLAG

SET_COMPLETION_FLAG

IOR_COMPLETED
1

UNLOCK_IOR

L

UNLOCK_IOR_READ
1

UPDATE_IOR_OVERRUN_CNT

UNLOCK_SELECT_LOCK

1

UNLOCK_DESELECT_LOCK

ALLOCATE_SM

\ J

111

3.3.8.1 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

New Specification Sent

None

Flag for CP/IOP Interprocessor Communication of I/O
Requests

I/O User Interface Software Specifications, Section 2.2.1.1

None

The New Specification Sent process resets a flag in shared memory to coordinate the
communication of the transaction, chain, and I/O request specifications from the CP to the
IOP. The process is used by an I/O System Services CP process to synchronize the
interprocessor communication.

3.3.8.2 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Send New Specification
None

Flag for CP/IOP Interprocessor Communication of I/O

" Requests

I/O User Interface Software Specifications, Section 2.2.1.1

None

The Send New Specification process sets a flag in shared memory to coordinate the
communication of the transaction, chain, and I/O request specifications from the CP to the
IOP. The process is used by the IOP Shared Memory Communication task to synchronize
the interprocessor communication.

112

3.3.8.3 Process Name:

Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Ready for New Specification

Flag for CP/IOP Interprocessor Communication of I/O
Requests

Flag for CP/IOP Interprocessor Communication of I/O
Requests
I/O User Interface Software Specifications, Section 2.2.1.1

None

The Ready for New Specification process reads a flag in shared memory used to coordinate
the communication of transaction, chain, and I/O request specifications. The process is
used by a CP process to determine if the IOP is able to receive more information.

3.3.8.4 Process Name:
Inputs:

Outputs:

Requirements
Reference:

Notes:

Description:

Clear Completion Flag
I/O Request Identifier |
I/O Request Completion Flag

I/O Communications Management Software Specifications,
Section 3.2.1.3

None

The Clear Completion Flag process resets the shared memory completion flag associated
with the designated I/O request identifier. This process is used by a CP application task to
clear a completion flag prior to polling it.

113

3.3.8.5 Process Name: Set Completion Flag

Inputs: I/O Request Identifier

Outputs: 1/0 Request Completion Flag

Requirements

Reference: I/O Communications Management Software Specifications,

Section 3.2.1.3
Notes: None
Description:
The Set Completion Flag process sets the shared memory completion flag associated with
the designated I/O request identifier. This process is used by an IOP I/O Request

Completion process to notify the CP application that the I/O request has been processed.

3.3.8.6 Process Name: I/O Request Completed

Inputs: I/O Request Identifier

Outputs: ' I/O Request Completion Flag

Requirements

Reference: I/O User Interface Software Specifications, Section 2.2.3.1
Notes: None

Description:

The I/O Request Completed process reads the shared memory completion flag associated
with the designated I/O request identifier. This process is used by a CP application task to
determine if the I/O request has been completely processed.

114

3.3.8.7 Process Name: Unlock I/O Request

Inputs: I/O Request Identifier

Outputs: I/O Request Semaphore for Output Buffers

Requirements

Reference: I/O User Interface Software Specifications, Section 2.2.2.1,
2.2.2.2

Notes: None

Description:

The Unlock I/O Request process unlocks the shared memory output data buffer select
region of the designated 1/O request by resetting the locking semaphore.

3.3.8.8 Process Name: Unlock I/O Request Read

Inputs: I/O Request Identifier

Outputs: I/O Request Semaphore for Input Buffers

Requirements :

Reference: I/O User Interface Software Specifications, Section 2.2.2.1,
" 2222

Notes: None

Description:

The Unlock I/O Request Read process unlocks the shared memory input data buffer select
region of the designated I/O request by resetting the locking semaphore.

115

3.3.8.9 Process Name:

Inputs:

Outputs:
Requirements

Reference:
Notes:

Description:

Update I/O Request Overrun Count

I/O Request Identifier
Number of Overruns

Number of Overruns Variable in Shared Memory

None

None

The Update I/O Request Overrun Count process sets an integer variable in shared memory
to equal the designated number of overruns. The process is used to notify the application
of the occurrence of an overrun (or frequency of occurrences).

3.3.8.10 Process Name:
Inputs:
Outputs:

Requirements
Reference:

Notes:

Description:

Unlock Select Lock
None

Semaphore for Select Buffers

I/O User Interface Software Specifications, Section 2.2.2.3

None

The Unlock Select Lock process unlocks the shared memory select buffers by resetting the
locking semaphore. The process is called by the CP Select process after writing the
transactions to be selected into shared memory and IOP I/O Request Execution process
after selecting the specified transactions.

116

3.3.8.11 Process Name:; Unlock Deselect Lock

Inputs: None

Outputs: Semaphore for Deselect Buffers

Requirements

Reference: I/O User Interface Software Specifications, Section 2.2.2.3
Notes: None

Description:

The Unlock Deselect Lock process unlocks the shared memory deselect buffers by resetting
the locking semaphore. The process is called by the CP Deselect process after writing the
transactions to be deselected into shared memory and IOP I/O Request Execution process
after deselecting the specified transactions.

3.3.8.12 Process Name: Allocate Memory

Inputs: None
Outputs: Shared Memory Flags
Shared Memory Events
Shared Memory Communication Buffers
Requirements
Reference: I/O User Interface Software Specifications, Section 2.2.2.4
Notes: None
Description:

The Allocate Memory process allocates and initializes flags, events, and buffers in shared
memory for the I/O System Services. These flags, events, and buffers are used for
interprocessor data communication and synchronization.

117

3.3.9 1/0 System Services Dual Port Memory Map

4)
I0SS_DPM_MAP

(' USERRECORD)
I
(USER_ACCESS)
|
INIT_IUS_DPM

INIT_GLOBAL_VARIABLES

L)

3.3.9.1 Process Name: Initialize I/O User Services DPM

Inputs: User Program and Data Pointer
Network Manager Program and Data Pointer
Outputs: None
Requirements
Reference: None
Notes: None
Description:

To execute the I/O requests created by the application, the IOSes have to be initialized.
The program region of the IOS is partitioned into a header section and a linked list of
transaction sections. Each transaction section of the IOS is used by only one chain,
whereas the header section is used by all chains.

The Initialize I/O User Services DPM process initializes the program region of the IOSes of
a GPC with the chain header and linked list of transaction modules. The process must
initialize the DPMs prior to the construction of the I/O user chains (see Process 3.3.2.2 -
Construct Chain).

118

3.3.9.2 Process Name: Initialize Global Variables

Inputs: None

Outputs: Global Transaction Count
Global Chain Count
Global I/O Request Count
Memory Index Array

Requirements

Reference: None

Notes: None

Description:

The Initialize Global Variables process initializes the Transaction, Chain, and I/O request
identifier global variables (global to the I/O System Services on a processor). It also
initializes the Memory Index Array which is used to initialize the IOS(es) of a GPC.

119

3.3.10 /O System Services Private ID Types

4 N\
I0SS_PRIVATE

C ID)

RETURN_ID_VALUE
1

SET_ID_VALUE

\ y

3.3.10.1 Process Name: Return Identifier Value

Inputs: Identifier of the private type ID
Outputs: Identifier of the type Integer
Requirements

Reference: None

Notes: None

Description:

A private type is used for the transaction and chain identifiers to protect the I/O User
Interface from errors introduced by the application.

The Return Identifier Value process converts an identifier from the private type to an integer
type.

120

3.3.10.2 Process Name: Set Identifier Value

Inputs: Identifier of the type Integer
Outputs: Identifier of the private type ID
Requirements

Reference: None

Notes: None

Description:

A private type is used for the transaction and chain identifiers to protect the I/O User
Interface from errors introduced by the application.

The Set Identifier Value process converts an identifier from an integer type to the private
type.

121

34 I/O Communications Management Data Dictionary

Absolute Chain ID : The number of chains that have been created by the applications user
(range 1 - Maximum Chain ID).

Absolute I/O Request ID : The number of I/O requests that have been created by the
applications user (range 1 - Maximum I/O Request ID).

Absolute Transaction ID : The number of transactions that have been created by the
applications user (range 1 - Maximum Transaction ID).

Active Root Link : A record containing the channel number and the channel identifier of the
FTP channel which is currently being used to access a given network via an IOS connected
- to that channel.

Active Root Link Flag: A boolean valued flag indicating whether or not a working
connection from a GPC to a root node exists.

Available I/O Services : An array of booleans indexed by I/O service identifiers, one for
each GPC in the system. When the boolean is true, the given service is available to the
GPC.

Channel Identifier : An identifier which designates a particular physical channel of an IOP.

Channel Number : A logical identifier for a channel of an IOP which contains the IOS
connected to a given network.

Chain Record : A record that retains all of the information associated with a chain created
by an applications user. The fields of a chain record are as follows:

a) Visible chain ID.

b) Private chain ID.

c¢) Network ID.

d) Array of transaction IDs (transactions in the chain).

e) Number of transactions.

f) Boolean flag which, when set, indicates that the chain has been assigned to an I/O

request.

g) Type of data in the chain (static, dynamic or mixed).

h) Address in the IOS DPM of the first transaction in the chain.

i) Pointer to the next chain in the I/O request.

j) Pointer to the associated 1/O request record.

Channel Selection : An array indicating which FTP channels interface to a particular
network.

122

Connected Networks : An array of booleans indexed by GPC identifier. When the boolean
is true, the given network is physically connected to the GPC.

Connection Indicator : A boolean valued object which when true indicates that a given
network is physically connected to a given GPC.

Current Root Link : A record containing the channel number and the channel identifier of
the FTP channel which is currently being used to access a given network via an 10S
connected to that channel.

DIU Chain Header Record : A record that specifies the initial sequence of instructions that
are executed by an IOS when each chain is executed. The sequence of instructions are as
follows:

a) Read the local time.

b) Read the HDLC Interrupt Register.

¢) Read the HDLC Status Register.

d) Set the number of residual bits.

e) Set the polling priority.

f) Enable the receiver.

g) Start the poll.

h) Read the local time.

i) Branch to first transaction in the chain.

DIU Chain Program Record : A record that consists of a DIU chain header record and
array of DIU transaction records. The record is used as a template to initialize the user
program region of the DPM of the IOS. The organization of the DPM after the initialization
process is illustrated in the following figure.

APPLICATION CHAIN

[START OR POLL |
HEADER TRANSACTION
L
~SEND OUTPUT]
v INSTRUCTION OUTPUT PACKET
#
1 ~
LINKED l g Bsmna
LIST OF ™~ GET INPUT |
TRANSACTIONS INSTRUCTION INPUT PACKET
4 #
2 > BYTBI S’I‘A’]‘Ul DATA
RANCHTONEXT RECD
: INSTRUCTIO!
N

- END OF CHAIN
PROGRAM

123

DIU Transaction Record : A record that specifies the sequence of instructions that are
executed by an IOS when each transaction is executed. The sequence of instructions are as
follows:

a) Disable the HDLC transmitter and receiver.

b) Stop the local timer.

¢) Enable the IOS auto flag.

d) Enable the HDLC transmitter.

e) Send the output command (data) to the DIU.

f) Disable the IOS auto flag.

g) Enable the HDLC receiver and disable HDLC transmitter.

h) Read the Interrupt Register.

i) Write the desired time out to the timer and start timer.

J) Receive solicited input.

k) Branch to next transaction in the chain or end of chain program.

DPM Pointer : A pointer whose value is the address of the first addressable byte of one
DPM or set of DPMs. When used to read from a DPM, the pointer value selects exactly
one DPM. When used to write to a DPM, the pointer value may select a set of physical
DPMs, at most one per channel, each occupying the same memory space within the
channel. The pointer imposes an organization on the memory space which supports the
execution of chains on an I/O network and the reading and writing of data used by those
chains.

I/O Network Identifier : A logical identifier which is uniquely assigned to every physical
network in the system.

I/O Network Manager Did Not Accept Repair : An array (indexed by network ID) of
boolean flags which, when set, indicate that the I/O Network Manager was unable to accept
a network repair request.

I/O Request Execution Count : The number of times of I/O request has been executed.

I/O Request Preempted Flag : A boolean flag which, when set, indicates that an I/O request
was preempted by a priority 7 /O request.

I/O Request Record : A record that retains all of the information associated with an /O
request created by an applications user. The fields of an I/O request record are as follows:

a) Visible I/O request ID.

b) Private I/O request ID.

¢) Network ID.

d) Array of chain IDs (chains in the I/O request).

e¢) Number of chains.

f) Total number of transactions in the I/O request.

124

g) /O request time out.

h) Frequency at which an event is used to notify the completion of the I/O request.
i) Priority of the I/O request.

j) Scheduling parameters - initiation, completion, and repetition.

k) Pointer into the I/O request priority queue.

/O Service Descriptor : A record which states whether a given I/O service is local or
regional. In the case of a local I/O network, it contains an array of network identifiers
which specify the networks assigned to this service.

I/O Service Identifier : A logical identifier which is uniquely assigned to every 1/O service
in the system. ’

IOS Identifier : An logical identifier which designates a particular IOS which in turn maps
to a specific address range within an FTP channel.

Local Chain Pointers : An array of pointers to chain records created by the applications
user. The array is indexed by chain ID and allows direct access to the chain records. Local
Chain Pointer arrays are constructed on the CP and IOP.

Local I/O Request Pointers : An array of pointers to [/O request records created by the
applications user. The array is indexed by I/O request ID and allows direct access to the
I/O request records. Local I/O Request Pointer arrays are constructed on the CP and IOP.

Local Transaction Pointers : An array of pointers to transaction records created by the
applications user. The array is indexed by transaction ID and allows direct access to the
transaction records. Local Transaction Pointer arrays are constructed on the CP and IOP.

Maximum Storage : An integer constant indicating the maximum number of bytes available
for the I/O chain programs and data for the dual ported memory of an I/O Sequencer.

Memory Index Array : An array of pointers indexed by network ID that indicate the next
available byte in the DPM of a particular IOS. The array is used to reserve memory in the
DPM of the IOS(es) for the transaction I/O buffers.

Posting Task Pointers: An array of pointers indexed by I/O request ID to the tasks that post
~ I/O service requests to the Queue Manager task (I/O Posting tasks). The array is used

during the allocation and scheduling of the Posting tasks.

Preempt I/0O Request Flag : A boolean flag which, when set, indicates that a priority 7 [/O
request is pending.

125

Preempt Spare Link Test Flag : A boolean flag which, when set, indicates that an I/O
request is pending.

Preempted 1/0 Request ID : The ID of the I/O request that was preempted by a priority 7
I/O request.

Preempted I/O Request State : The state (either "before writing output data to the DPM",
"before I/O request execution" or "before uploading input data from the DPM") of the /O
request prior to being preempted by a priority 7 I/O request.

Relative DPM address : A record which is used to map the thirty-two bit address used by
the FTP to access a location in an IOS/DPM into a sixteen bit value which the IOS will use
to access the same location. Since the address space of the IOS is 8K bytes, only the lower
thirteen bits are used in the mapping, the three highest order bits are assigned a value of
zero. The mapping is defined below, where f is the value of the ith bit in the sixteen bit
address:

0,if 15<=i<=13 _

f(i)= value of the ith bit in the thirty-two bit address if 0 <=1i<=11
value of the 15% bit in the thirty-two bit address if i= 12

Restoration Record: A record containing information about the repaired network
component which the operator wishes to be returned to service. If a node is to be restored,
the node number is provided. If a link is to be restored, a node number and a port number
adjacent to that link is provided.

Results of Channel OK Test : A boolean value which is true if the test indicates that an
FTP channel is not desynchronized and false if it is desynchronized.

Spare Link Test Preempted Flag : A boolean flag which, when set, indicates that a spare
link cycling request was preempted by an I/O request.

System Address : A thirty-two bit value which maps to some physical location in the
system. By which the M680X0 microprocessor accesses those physical locations

Unreachable DIUs : A list of DIUs which are attached to failed nodes and which therefore
cannot send or receive messages on the I/O network.

Transaction Record : A record that retains all of the information associated with a
transaction created by an applications user. The fields of a transaction record are as
follows:

a) Visible transaction ID.

b) Private transaction ID.

c¢) DIU address.

126

d) Transaction type (input or output).

e) Number of input data bytes.

f) Number of output data bytes.

g) Maximum number of errors before system bypass.

h) Number of errors that have occurred during the execution of the transaction.
i) A boolean flag which, when set, indicates that the transaction is selected.
j) Time out.

k) Local address (CP or IOP) of the input data buffer.

1) Local address (CP or IOP) of the output data buffer.

m) Location of input data buffer in shared memory.

n) Location of output data buffer in shared memory.

0) Pointer to next transaction in chain.

p) Pointer to associated chain record.

q) Location of input data buffer in DPM of the IOS

r) Location of output data buffer in DPM of 10S.

s) Boolean flag indicating if the transaction has been assigned to a chain.

User Pointer : A pointer whose value is the address of the first addressable byte of the
upper 4K of one DPM or set of DPMs. When used to read from a DPM, the pointer value
selects exactly one DPM. When used to write to a DPM, the